Anheuser-Busch InBev is a publicly traded company (Euronext: AB InBev) based in Leuven, Belgium, with secondary listings on the Mexico (MEXBOL: ANB) and South Africa (JSE: ANH) stock exchanges and with American Depositary Receipts on the New York Stock Exchange (NYSE: BUD). Our Dream is to bring people together for a better world. Beer, the original social network, has been bringing people together for thousands of years. We are committed to building great brands that stand the test of time and to brewing the best beers using the finest natural ingredients. Our diverse portfolio of well over 500 beer brands includes global brands Budweiser®, Corona® and Stella Artois®; multi-country brands Beck’s®, Hoegaarden®, Leffe® and Michelob Ultra®; and local champions such as Aguila®, Antarctica®, Bud Light®, Brahma®, Cass®, Castle®, Castle Lite®, Cristal®, Harbin®, Modelo Especial®, Quilmes®, Victoria®, Sedrin® and Skol®. Our brewing heritage dates back more than 600 years, spanning continents and generations. From our European roots at the Den Hoorn brewery in Leuven, Belgium; to the pioneering spirit of the Anheuser & Co. brewery in St. Louis, US; to the creation of the Castle Brewery in South Africa during the Johannesburg gold rush; to Bohemia, the first brewery in Brazil. Geographically diversified with a balanced exposure to developed and developing markets, we leverage the collective strengths of approximately 164,000 employees based in nearly 50 countries worldwide. For 2020, our reported revenue was 46.9 billion US dollars (excluding joint ventures and associates).

(W-FB0.1a) Which activities in the food, beverage, and tobacco sector does your organization engage in?
Processing/Manufacturing

(W0.2) State the start and end date of the year for which you are reporting data.

<table>
<thead>
<tr>
<th>Reporting year</th>
<th>Start date</th>
<th>End date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>January 1 2020</td>
<td>December 31 2020</td>
</tr>
</tbody>
</table>
(W0.3) Select the countries/areas for which you will be supplying data.
Argentina
Barbados
Belgium
Bolivia (Plurinational State of)
Botswana
Brazil
Canada
China
Colombia
Dominican Republic
Ecuador
El Salvador
Eswatini
Germany
Ghana
Guatemala
Honduras
India
Lesotho
Luxembourg
Mexico
Mozambique
Namibia
Netherlands
Nigeria
Panama
Paraguay
Peru
Republic of Korea
Russian Federation
Saint Vincent and the Grenadines
South Africa
Spain
Uganda
Ukraine
United Kingdom of Great Britain and Northern Ireland
United Republic of Tanzania
United States of America
Zambia

(W0.4)

(W0.4) Select the currency used for all financial information disclosed throughout your response.
USD

(W0.5)

(W0.5) Select the option that best describes the reporting boundary for companies, entities, or groups for which water impacts on your business are being reported.
Companies, entities or groups over which operational control is exercised

(W0.6)

(W0.6) Within this boundary, are there any geographies, facilities, water aspects, or other exclusions from your disclosure?
Yes

(W0.6a)

(W0.6a) Please report the exclusions.

<table>
<thead>
<tr>
<th>Exclusion</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data included is that of AB InBev’s global beer and soft drink facilities. Data excluded includes: sales and distribution operations, vertical operations (including some packaging facilities), and some smaller brewing and soft drink facilities (non-material).</td>
<td>We report data from our internal Voyager Plant Optimization (VPO) environmental management system. The process of becoming compliant with VPO certification ensures that we have the highest quality data available. Data may not be included in VPO if a facility is new, recently acquired or extremely small. Approximately 95% of our beverage plants throughout the world have been certified in accordance with these VPO requirements. Each plant must pass through our VPO qualification process to ensure our management system is implemented as intended. This process, which takes approximately six to nine months, is required before data is tracked in VPO. This reporting is focused on our brewing and soft drink operations. Our reporting excludes data from our vertical operations, sales and distribution operations, and some smaller beverage facilities. The excluded operations typically use very low amounts of water and, therefore, are not reported here. The beverage plants that are reported represent about 95% of total company water withdrawals; it is estimated that the excluded operations represent less than 5% of total water use.</td>
</tr>
</tbody>
</table>
W1. Current state

W1.1

(W1.1) Rate the importance (current and future) of water quality and water quantity to the success of your business.

<table>
<thead>
<tr>
<th>Direct use importance rating</th>
<th>Indirect use importance rating</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sufficient amounts of good quality freshwater available for use</td>
<td>Vital</td>
<td>Vital</td>
</tr>
<tr>
<td>Sufficient amounts of recycled, brackish and/or produced water available for use</td>
<td>Important</td>
<td>Important</td>
</tr>
</tbody>
</table>

W-FB1.1a

(W-FB1.1a) Which water-intensive agricultural commodities that your organization produces and/or sources are the most significant to your business by revenue? Select up to five.

<table>
<thead>
<tr>
<th>Agricultural commodities</th>
<th>% of revenue dependent on these agricultural commodities</th>
<th>Produced and/or sourced</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maize</td>
<td>21-40</td>
<td>Sourced</td>
<td>Based on FY2020 sales, the percent revenue dependent on maize is approximately 23%.</td>
</tr>
<tr>
<td>Rice</td>
<td>Less than 10%</td>
<td>Sourced</td>
<td>Based on FY2020 sales, the percent revenue dependent on rice is approximately 9%.</td>
</tr>
<tr>
<td>Other, please specify</td>
<td>61-80</td>
<td>Sourced</td>
<td>Based on FY2020 sales, the percent revenue dependent on barley and malted barley is approximately 61%.</td>
</tr>
</tbody>
</table>

W1.2
Across all your operations, what proportion of the following water aspects are regularly measured and monitored?

<table>
<thead>
<tr>
<th>% of sites/facilities/operations</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water withdrawals – total volumes</td>
<td>100%</td>
</tr>
<tr>
<td>Water withdrawals – volumes by source</td>
<td>100%</td>
</tr>
<tr>
<td>Entrained water associated with your oil & gas sector activities – total volumes [only oil and gas sector]</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Produced water associated with your oil & gas sector activities – total volumes [only oil and gas sector]</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Water withdrawals quality</td>
<td>100%</td>
</tr>
<tr>
<td>Water discharges – total volumes</td>
<td>100%</td>
</tr>
<tr>
<td>Water discharges – volumes by destination</td>
<td>100%</td>
</tr>
<tr>
<td>Water discharges – volumes by treatment method</td>
<td>100%</td>
</tr>
<tr>
<td>Water discharge quality – by standard effluent parameters</td>
<td>100%</td>
</tr>
<tr>
<td>Water discharge quality – temperature</td>
<td>100%</td>
</tr>
<tr>
<td>Water consumption – total volume</td>
<td>100%</td>
</tr>
<tr>
<td>Water recycled/retained</td>
<td>100%</td>
</tr>
<tr>
<td>The provision of fully-functioning, safely managed WASH services to all workers</td>
<td>100%</td>
</tr>
</tbody>
</table>
(W1.2b) What are the total volumes of water withdrawn, discharged, and consumed across all your operations, and how do these volumes compare to the previous reporting year?

<table>
<thead>
<tr>
<th>Volume</th>
<th>Comparison with previous reporting year</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total withdrawals</td>
<td>149,628.47</td>
<td>Lower</td>
</tr>
<tr>
<td>Total discharges</td>
<td>94,300.73</td>
<td>Lower</td>
</tr>
<tr>
<td>Total consumption</td>
<td>55,327.74</td>
<td>Lower</td>
</tr>
</tbody>
</table>

(W1.2d) Indicate whether water is withdrawn from areas with water stress and provide the proportion.

<table>
<thead>
<tr>
<th>Withdrawals are from areas with water stress</th>
<th>% withdrawn from areas with water stress</th>
<th>Comparison with previous reporting year</th>
<th>Identification tool</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
<td>Yes</td>
<td>11-25</td>
<td>About the same</td>
<td>WWF Water Risk Filter</td>
</tr>
</tbody>
</table>

W-FB1.2e
CDP

W1.2h

(W-FB1.2e) For each commodity reported in question W-FB1.1a, do you know the proportion that is produced/sourced from areas with water stress?

<table>
<thead>
<tr>
<th>Agricultural commodities</th>
<th>The proportion of this commodity produced in areas with water stress is known</th>
<th>The proportion of this commodity sourced from areas with water stress is known</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maize</td>
<td>Not applicable</td>
<td>Yes</td>
<td>AB InBev utilizes a two-step process to identify the proportion of agricultural commodities sourced from water stressed areas. Initially the WRI Aqueduct and WWF risk filter tool are used for the basin, and then when an area has been identified as high risk, our own custom-designed water assessment tool is employed. AB InBev considers the basin water risk (both quantity and quality) as well as factors such as relative size of the volume of the commodity purchased and local relevance such as degree of stakeholder interest or impact from purchasing decision and the potential impact for AB InBev from changing cost or quality considerations to aid in our internal facility risk assessment process. Small maize projects in areas such as Africa, concern has been determined about the availability and quality of water. These projects do not represent a meaningful percentage of global sourcing volumes.</td>
</tr>
<tr>
<td>Rice</td>
<td>Not applicable</td>
<td>Yes</td>
<td>AB InBev utilizes a two-step process to identify the proportion of agricultural commodities sourced from water stressed areas. Initially the WRI Aqueduct tool and WWF risk filter are used for the basin, and then when an area has been identified as high risk, our own custom-designed water assessment tool is employed. AB InBev considers the basin water risk (both quantity and quality) as well as factors such as relative size of the volume of the commodity purchased and local relevance such as degree of stakeholder interest or impact from purchasing decision and the potential impact for AB InBev from changing cost or quality considerations to aid in our internal facility risk assessment process. For rice in areas such as the USA, concern about the impact on water quality has been determined and pilot projects have been implemented with measurable impact on reducing water use, fertilizer use and methane emissions. These projects do not represent a meaningful percentage of global sourcing volumes.</td>
</tr>
<tr>
<td>Other commodities from W-FB1.1a, please specify (Barley)</td>
<td>Not applicable</td>
<td>Yes</td>
<td>AB InBev utilizes a two-step process to identify the proportion of agricultural commodities sourced from water stressed areas. Initially the WWF risk filter and WRI Aqueduct tool are used for the basin, and then when an area has been identified as high risk, our own custom-designed water assessment tool is employed. AB InBev considers the basin water risk (both quantity and quality) as well as factors such as relative size of the volume of the commodity purchased and local relevance such as degree of stakeholder interest or impact from purchasing decision and the potential impact for AB InBev from changing cost or quality considerations to aid in our internal facility risk assessment process. We used this process to identify risks of reduced water availability and increased sediment in the Idaho Falls area and initiated processes to verify these risks. For example, in Idaho we work directly with farmers on better irrigation technology and techniques and also with the US Forestry Service on reducing sediment flowing into water courses.</td>
</tr>
</tbody>
</table>

W-FB1.2g

(W-FB1.2g) What proportion of the sourced agricultural commodities reported in W-FB1.1a originate from areas with water stress?

<table>
<thead>
<tr>
<th>Agricultural commodities</th>
<th>% of total agricultural commodity sourced from areas with water stress</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maize</td>
<td>0%</td>
<td>We used WRI Aqueduct and WWF Water Risk filter to map water risk for all direct sourcing areas for each commodity, then validated the water availability risk with local agronomists. We calculated the percent as percent of volume we source of that commodity in high risk areas divided by the total of that commodity sourced. This metric is used within AB InBev to help inform our maize sourcing strategy, as we primarily source this commodity from suppliers rather than directly from farmers. The proportion has not changed in last year and we do not anticipate any changes in future trends.</td>
</tr>
<tr>
<td>Rice</td>
<td>11-25</td>
<td>We used WRI Aqueduct and WWF Water Risk filter to map water risk for all direct sourcing areas for each commodity, then validated the water availability risk with local agronomists. We calculated the percent as percent of volume we source of that commodity in high risk areas divided by the total of that commodity sourced. This metric is used within AB InBev to help inform our sourcing and growing strategies for rice. We also consider the total volume sourced from a location and the difficulty in switching sourcing from that area to another (e.g. because of stakeholder concerns or government policy). We have conducted a deeper analysis of water risk in rice growing region in Jonesboro, USA and classified this as an area facing potential water stress. This resulted in an increase in the proportion of rice classified as coming from high risk areas; we do not anticipate further changes in future trends.</td>
</tr>
<tr>
<td>Other sourced commodities from W-FB1.2e, please specify (Barley)</td>
<td>26-50</td>
<td>We used WRI Aqueduct and WWF Water Risk filter to map water risk for all direct sourcing areas for each commodity, then validated the water availability risk with local agronomists. We calculated the percent as percent of volume we source of that commodity in high risk areas divided by the total of that commodity sourced. We also consider the total volume sourced from a location and the difficulty in switching sourcing from that area to another (e.g. because of stakeholder concerns or government policy). This metric is used within AB InBev to help inform our growing and sourcing strategies and engaging barley farmers in South Africa, Mexico and the USA. The proportion has not changed in last year and we do not anticipate any changes in future trends.</td>
</tr>
</tbody>
</table>

W1.2h
(W1.2i) Provide total water discharge data by destination.

<table>
<thead>
<tr>
<th>Relevance</th>
<th>Volume (megaliters/year)</th>
<th>Comparison with previous reporting year</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh surface water</td>
<td>Relevant</td>
<td>25102.99</td>
<td>Lower</td>
</tr>
<tr>
<td>Brackish surface water/seawater</td>
<td>Not relevant</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Groundwater – renewable</td>
<td>Relevant</td>
<td>57820.07</td>
<td>Lower</td>
</tr>
<tr>
<td>Groundwater – non-renewable</td>
<td>Not relevant</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Produced/Entained water</td>
<td>Not relevant</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Third party sources</td>
<td>Relevant</td>
<td>66705.41</td>
<td>Lower</td>
</tr>
</tbody>
</table>

(W1.2j) Provide total water withdrawal data by source.

<table>
<thead>
<tr>
<th>Relevance</th>
<th>Volume (megaliters/year)</th>
<th>Comparison with previous reporting year</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh surface water</td>
<td>Relevant</td>
<td>44838.75</td>
<td>Much higher</td>
</tr>
<tr>
<td>Brackish surface water/seawater</td>
<td>Relevant</td>
<td>2375.25</td>
<td>Higher</td>
</tr>
<tr>
<td>Groundwater</td>
<td>Relevant</td>
<td>897.87</td>
<td>Higher</td>
</tr>
<tr>
<td>Third-party destinations</td>
<td>Relevant</td>
<td>46188.86</td>
<td>Much lower</td>
</tr>
</tbody>
</table>
(W.1.2) Within your direct operations, indicate the highest level(s) to which you treat your discharge.

<table>
<thead>
<tr>
<th>Treatment Level</th>
<th>Relevance</th>
<th>Volume (megaliters/year)</th>
<th>Comparison of treated volume with previous reporting year</th>
<th>% of your sites/facilities/operations this volume applies to</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tertiary treatment</td>
<td>Relevant</td>
<td>22015.53</td>
<td>This is our first year of measurement</td>
<td>11-20</td>
<td>In 2020, approximately 17% of our sites utilized tertiary treatment. The treatment level at each facility is a function of local regulations. In all cases, AB InBev has appropriate permits allowing the type of treatment or discharges at that facility. The level of treatment is a function of two parameters: 1) local norms and regulations with which we comply and 2) the final effluent destination.</td>
</tr>
<tr>
<td>Secondary treatment</td>
<td>Relevant</td>
<td>62158.38</td>
<td>This is our first year of measurement</td>
<td>61-70</td>
<td>In 2020, approximately 67% of our sites utilized secondary treatment as the highest level of treatment. The treatment level at each facility is a function of local regulations. In all cases, AB InBev has appropriate permits allowing the type of treatment or discharges at that facility. The level of treatment is a function of two parameters: 1) local norms and regulations with which we comply and 2) the final effluent destination.</td>
</tr>
<tr>
<td>Primary treatment only</td>
<td>Relevant</td>
<td>5773.41</td>
<td>This is our first year of measurement</td>
<td>11-20</td>
<td>In 2020, approximately 13% of our sites utilized primary treatment as the highest level of treatment. The treatment level at each facility is a function of local regulations. In all cases, AB InBev has appropriate permits allowing the type of treatment or discharges at that facility. The level of treatment is a function of two parameters: 1) local norms and regulations with which we comply and 2) the final effluent destination.</td>
</tr>
<tr>
<td>Discharge to the natural environment without treatment</td>
<td>Not relevant</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td>In 2020, we had no sites that discharged to the natural environment without treatment.</td>
</tr>
<tr>
<td>Discharge to a third party without treatment</td>
<td>Relevant</td>
<td>4353.41</td>
<td>This is our first year of measurement</td>
<td>1-10</td>
<td>In 2020, approximately 4% of our sites discharged to a third party. In instances where a facility discharges without treatment it is because the facility by agreement with local authorities is requested not to treat it.</td>
</tr>
<tr>
<td>Other</td>
<td>Relevant</td>
<td>0</td>
<td>This is our first year of measurement</td>
<td>1-10</td>
<td>We have a small number of operational sites that do not have any level of treatment because they have no discharge volume. This is either due to compliance with regulatory requirement (for example, zero discharge sites in India) or because the discharge from the site is transferred to another company site for treatment (so the discharge volume is counted in the discharge volume of the other site where treatment occurs).</td>
</tr>
</tbody>
</table>

W-FB1.3

(W-FB1.3) Do you collect/calculate water intensity for each commodity reported in question W-FB1.1a?

<table>
<thead>
<tr>
<th>Agricultural commodities</th>
<th>Water intensity information for this produced commodity is collected/calculated</th>
<th>Water intensity information for this sourced commodity is collected/calculated</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maize</td>
<td>Not applicable</td>
<td>Yes</td>
<td>AB InBev has undertaken a detailed water footprint analysis of all major crops based on the values provided by the Water Footprinting Network for each sourcing region. Where available, we use country level water footprint indicators for each crop; together with sourcing volume this provides best estimate of crop water intensity. Also take into consideration the balance between irrigation and rainfed areas.</td>
</tr>
<tr>
<td>Rice</td>
<td>Not applicable</td>
<td>Yes</td>
<td>AB InBev has undertaken a detailed water footprint analysis of all major crops based on the values provided by the Water Footprinting Network for each sourcing region. Where available, we use country level water footprint indicators for rice; together with sourcing volume this provides the best estimate of crop water intensity. We also take into consideration the balance between irrigation and rainfed areas.</td>
</tr>
<tr>
<td>Other commodities from W-FB1.1a, please specify (Barley)</td>
<td>Not applicable</td>
<td>Yes</td>
<td>AB InBev has undertaken a water footprinting analysis of all major crops based on the values provided by the Water Footprinting Network for each sourcing region. Where available, we use country level water footprint indicators for barley; together with sourcing volume this provides the best estimate of crop water intensity. We also take into consideration the balance between irrigation and rainfed areas.</td>
</tr>
</tbody>
</table>
(W-FB1.3b) Provide water intensity information for each of the agricultural commodities identified in W-FB1.3 that you source.

Agricultural commodities

Maize

Water intensity value (m3)
115

Numerator: Water aspect
Total water consumption

Denominator
Liters

Comparison with previous reporting year
About the same

Please explain
AB InBev has undertaken a water footprinting analysis of all major crops based on the values provided by the Water Footprinting Network. Internally, our strategy to reduce this water intensity is to use the metrics to understand and manage water-related risks. We are actively working with farmers to improve irrigation efficiency in order to reduce overall water footprint in places such as the Northern Cape in South Africa. This includes research and agronomic advice on better water application technology and processes, such as using variable rate applicators. The water intensity of crops does not vary significantly over time, so the water intensity is about the same as previous years, as we do not envisage any major shift in sourcing volumes of maize from different regions than currently. This may change if sourcing requirements change. The value of the analysis is in gaining visibility and strategic insight into our value chain rather than from detailed and frequent footprint data.

Agricultural commodities

Rice

Water intensity value (m3)
170

Numerator: Water aspect
Total water consumption

Denominator
Liters

Comparison with previous reporting year
About the same

Please explain
AB InBev has undertaken a water footprinting analysis of all major crops based on the values provided by the Water Footprinting Network. Internally, our strategy to reduce this water intensity is to use the metrics to understand and manage water-related risks and also shaping our work with farmers to improve water efficiency to reduce the water footprint of rice. Farmers benefit from sustainable agriculture support; the company offers tools to help them reduce the environmental impacts of growing rice while saving on water. In terms of future trends, the water intensity of crops does not vary significantly over time, so the intensity is about the same as previous years, as our rice sourcing is largely based in the same regions as before and major changes in sourcing regions are not foreseen in the immediate future. We are engaging farmers directly to improve water use per ton of product as well as reducing use of fertilizers and chemicals which could leak into ground water sources.

Agricultural commodities

Other sourced commodities from W-FB1.3, please specify (Barley)

Water intensity value (m3)
110

Numerator: Water aspect
Total water consumption

Denominator
Liters

Comparison with previous reporting year
About the same

Please explain
AB InBev’s work with barley farmers includes low-elevation sprinkler application on pivot systems, drip irrigation, and precision/variable rate systems. Based on our water risk models and agronomic work, in terms of future trends, the water intensity of crops does not vary significantly over time, so the intensity is about the same as previous years, as changes in sourcing barley from different regions tend to balance each other out in terms of water intensity. Internally, our strategy to reduce this water intensity is to use the metrics to understand and manage water-related risks such as drought and opportunities such as cost saving. Careful analysis shows major value for a company such as AB InBev in fully understanding that more than 90% of water is used in the sourcing component of the value chain, and barley is by far our dominant crop, but there is diminishing return in trying to do the same complex calculation annually when the overall conclusion remains the same.

W1.4

(W1.4) Do you engage with your value chain on water-related issues?

Yes, our suppliers

Yes, our customers or other value chain partners
What proportion of suppliers do you request to report on their water use, risks and/or management information and what proportion of your procurement spend does this represent?

% of suppliers by number
26-50

% of total procurement spend
76-100

Rationale for this coverage

Agricultural suppliers were selected because over 90% of the water used to produce our products is used in agriculture. We developed a platform for our growers to anonymously compare their barley production practices and outcomes across our network. The platform, SmartBarley, enables growers to use data and share best practices to benefit their farms and communities, while strengthening the supply chain. SmartBarley is a portfolio of field level programs focusing on trial and transferring new crop technologies and improved practices. This provides incentive to growers to close gaps and reach new benchmarks in productivity and natural resource use efficiency. Suppliers are incentivized to report because they can access information to help them improve their own agricultural programs, with the potential to reduce costs and increase productivity. We work with growers on benchmarking that leads to tangible results and emphasize collective action to shift farming practices towards increased resource efficiency, such as water use at field-level.

Impact of the engagement and measures of success

(i) Information in the system includes technical, project, and other data that is used to identify opportunities to improve resource management, reduce water risks, increase efficiency and water productivity, and measure the success of soil and irrigation management pilot initiatives. (ii) The information gathered from suppliers through this program is used internally to help us achieve our water stewardship goals by helping growers improve water use efficiency. The data is used to benchmark resource efficiency such as water use against farmers with similar agricultural practices and soil types and then identifying potential options for improvement. Internally this information is used to provide feedback to farmers and inform the agronomic advice we provide farmers. We are actively tracking progress, and our metrics for success include the number of farmers using the tool as well as their resource efficiency such as better utilization of water and fertilizer.

Comment

We are working to engage our largest suppliers to set their own sustainability goals so we can scale and accelerate impact. In July 2020, building on our existing water partnership with TNC, we launched a partnership with TNC in regenerative agriculture, including initiatives that address soil health, biodiversity and water stewardship across our agriculture supply chain. Together, we developed a framework for designing impactful soil health programs, launched on World Soil Day in December 2020.

Provide details of any other water-related supplier engagement activity.

Type of engagement
Innovation & collaboration

Details of engagement
Provide training and support on sustainable agriculture practices to improve water stewardship

% of suppliers by number
26-50

% of total procurement spend
76-100

Rationale for the coverage of your engagement

AB InBev is actively engaging with many agriculture and raw material suppliers, which represents more than 90% of the company’s water footprint, and the company is actively exploring new approaches to engage other suppliers such as packaging. Knowledge sharing is a critical strategy within our agricultural operations and supply chain. We use a robust internal benchmarking process to share best practices and drive productivity gains within our operations.

Impact of the engagement and measures of success

We engage directly with farmers in our supply chain to help them to improve productivity while conserving natural resources. We measure our success based on whether on-farm measurement shows water savings. Current measurement using this methodology shows savings of 20-50% per ton of crop. We employ a team of more than 150 researchers and agronomists globally who use the supplier engagement data to develop new crop varieties suited to local conditions, and work with farmers to improve their agricultural practices and operations. We also partner with more than 30 organizations, including leading universities, research centers, agritourism companies, NGOs and technology firms to invest financial and technical resources in projects that build green infrastructure, conserve and restore forests, restore natural habitats, and conserve soil in key markets such as Brazil, South Africa and Zambia.

Comment

We engage directly with farmers in our supply chain to help them improve productivity while conserving natural resources. In July 2020, building on our existing water partnership with TNC, we launched a partnership with TNC in regenerative agriculture, including initiatives that address soil health, biodiversity and water stewardship across our agriculture supply chain. Together, we developed a framework for designing impactful soil health programs, launched on World Soil Day in December 2020.
W2. Business impacts

W2.1

(W2.1) Has your organization experienced any detrimental water-related impacts?
Yes

W2.1a

(W2.1a) Describe the water-related detrimental impacts experienced by your organization, your response, and the total financial impact.

Country/Area & River basin
United States of America
Other, please specify (Snake River)

Type of impact driver & Primary impact driver
Physical
Ecosystem vulnerability

Primary impact
Supply chain disruption

Description of impact
Farmers in Idaho supply a significant portion of AB InBev's direct barley sourcing in the United States and the state is home to two AB InBev processing facilities. As a result of Idaho's arid climate, farmers depend on irrigation water to produce high-yielding, high-quality malting barley each year. Poor tributary conditions have reduced water inflow and increased sedimentation to the Palisades Reservoir, threatening a water source vital to AB InBev's direct barley sourcing in Idaho.

Primary response
Support river basin restoration

Total financial impact
10600000

Description of response
Restoring and protecting tributaries is critical to increasing water inflow and reducing sedimentation to the Palisades Reservoir. AB InBev supported the U.S. Department of Agriculture Forest Service to stabilize tributary corridors, build tributary crossings, and reroute public trails to improve hydrologic function and reduce downstream sedimentation. AB InBev partnered with watershed monitoring technology company Gybe to measure sediment changes in the reservoir and evaluate the efficacy of its riparian ecosystem restoration and protection initiatives. AB InBev's riparian ecosystem restoration response mitigates future supply chain disruptions as well as sourcing premiums. Idaho is an important barley sourcing region for our company and uses water from the Palisades Reservoir for irrigation. In the extreme and unlikely scenario that water for irrigation is substantially reduced, should there be a need to replace approximately 25% of local barley currently sourced from Idaho with imported barley, this could result in a potential cost in the region of $10.6 million, which is how the potential financial impact was modeled.

W2.2

(W2.2) In the reporting year, was your organization subject to any fines, enforcement orders, and/or other penalties for water-related regulatory violations?
No

W3. Procedures

W-FB3.1
How does your organization identify and classify potential water pollutants associated with its food, beverage, and tobacco sector activities that could have a detrimental impact on water ecosystems or human health?

Brewery effluent is fairly standardized before treatment processes: it is typically high in COD, BOD, TSS, nitrogen and phosphorous. Following treatment procedures, we monitor parameters required by regulations and in accordance with to standards specified by authorities. In cases where appropriate regulation is not in place, we will impose our own appropriate requirements. Even if they are not regulatory requirements, we realize that COD (or BOD), solids and pH range are final effluent metrics that should be monitored daily to protect the environment. Our internal standard is that we monitor within our direct operations the required quality parameters to the level either required by local/national discharge permits/contracts or, if these parameters are not legally required, we will determine appropriate daily limits and maintain compliance against them. In brewery operations, effluent not treated appropriately could have negative environmental impacts such as pollution, nitrogen overload, temperature impact on water sources etc., as a result of excess COD, BOD, TSS, nitrogen and/or phosphorous discharge. While we do not monitor water quality parameters outside of our direct operations, we consider water-related impacts across our value chain. In our supply chain, there is a risk of farmers contributing to pollution of water courses through on-field run off as a result of over application of chemicals or fertilizers. This could potentially lead to nitrogen loading, high phosphorous or pesticide levels, soil salination or sediment loading. We engage in active support to farmers to measure and manage the amount of chemicals used in their agriculture processes. We have set up model farms in key markets such as South Africa and Mexico to trial practices in support of improved water efficiency and quality and promote these practices with farmers in that region. To continue evolving our approach to support adoption of sustainable practices, in 2020 we committed more than 500,000 USD to support model farms and research at four universities across our barley and rice sourcing regions in the US (University of Arkansas, University of Idaho, North Dakota State University, Montana State University). The direct effects of untreated effluent would negatively affect the surrounding local environment. The magnitude of the impact would be dependent on the local environmental settings (i.e., vegetation, proximity to water bodies, etc.) surrounding a facility. However, if properly recognized and contained, the magnitude of impact should not extend past the immediate surrounding areas of a facility. Today AB InBev has more than 97% of the effluent treated via BTS (Biological Treatment System). The 3% remaining is not treated internally but via municipal with written agreement with authorities. The effluent treatment used is mostly Primary treatment to segregate solids before an equalization system with neutralization treatment to ensure control of pH before undergoing classic Secondary treatment with Anaerobic reactors (treating 80% of the organic load) and the 20% remaining is treated by aerobic system. In some operations we have also Tertiary treatment (MF, RO, UF.) used when necessitated by regulation or in the case of internal reuse of effluent. Globally we have 95% of BTS efficiency that allow us to achieve the local regulations and meet legal parameters. For years we have been investing in new technologies as MBR and today we have in our operational sites all technologies available in the market.

W-FB3.1a
Potential water pollutant
Wastewater and sludge with high organic or suspended solids content

Activity/value chain stage
Agriculture – supply chain
Manufacturing – direct operations

Description of water pollutant and potential impacts
In brewery operations, wastewater with high organic or suspended solids content that is not treated appropriately could have negative environmental impacts such as pollution, nitrogen overload, temperature impact on water sources etc., as a result of excess COD, BOD, TSS, nitrogen and phosphorous discharge. We engage in active management of effluent to avoid negative impacts such as pH, suspended solids, conductivity etc. This includes aerobic and anaerobic treatment processes. In our supply chain, there is a risk of farmers contributing to pollution of watercourses through on-field runoff as a result of over application of chemicals or fertilizers. This could potentially lead to nitrogen loading, high phosphorus or pesticide levels, soil salination or sediment loading. Direct effects of untreated effluent would negatively affect the surrounding local environment. The magnitude of the impact would be dependent on the local environmental settings (i.e., vegetation, proximity to water bodies, etc.) surrounding a facility. However, if properly recognized and contained, the magnitude of impact should not extend past the immediate surrounding areas of a facility.

Management procedures
Soil conservation practices
Crop management practices
Sustainable irrigation and drainage management
Fertilizer management
Waste water management

Please explain
Today AB InBev manages the risks from wastewater with high organic or suspended solids content through effective wastewater management practices. Specifically, we have more than 97% of the effluent treated via BTS (Biological Treatment System). The 3% remaining is not treated internally but via municipal services with written agreements with authorities. To evaluate and measure success we have set our objective to reach 100% of all brewing sites with aerobic biological treatment using bacteria to metabolize the organic matter in the wastewater, resulting in microorganisms converting solids and allowing the settle-able solids to separate out. Anaerobic wastewater treatment is based on biological conversion of organic compounds by anaerobic microorganisms into biogas such as methane, which can be used as biogas to produce onsite energy. We engage in active support to farmers to measure and manage the amount of chemicals used in their agriculture processes, such as nitrogen use efficiency, total phosphorus applied, potassium use and sulphur application in relation to the grower’s field-by-field barley production and performance. This information is uploaded to www.smartbarley.com, where growers can then access over 40 crop performance metrics for each field using a unique login and password. We manage the risks of the potential impacts outlined through engaging in active support to farmers using this SmartBarley tool to measure and manage the amount of inputs used. Growers can anonymously benchmark their fields against other growers through a selection of metrics that represent their field productivity, input use efficiency and crop management practices. In addition, in 2020, building on our existing water partnership with The Nature Conservancy (TNC), we launched a partnership with TNC in regenerative agriculture, including initiatives that address soil health, biodiversity and water stewardship across our agriculture supply chain. Together, we developed a framework for designing impactful soil health programs, which launched on World Soil Day in December 2020.

Potential water pollutant
Fertilizers

Activity/value chain stage
Agriculture – supply chain
Manufacturing – direct operations

Description of water pollutant and potential impacts
In brewery operations, wastewater with high organic or suspended solids content that is not treated appropriately could have negative environmental impacts such as pollution, nitrogen overload, temperature impact on water sources etc., as a result of excess COD, BOD, TSS, nitrogen and phosphorous discharge. We engage in active management of effluent to avoid negative impacts such as pH, suspended solids, conductivity etc. This includes aerobic and anaerobic treatment processes. In our supply chain, there is a risk of farmers contributing to pollution of watercourses through on-field runoff as a result of over application of chemicals or fertilizers. This could potentially lead to nitrogen loading, high phosphorus or pesticide levels, soil salination or sediment loading. Direct effects of untreated effluent would negatively affect the surrounding local environment. The magnitude of the impact would be dependent on the local environmental settings (i.e., vegetation, proximity to water bodies, etc.) surrounding a facility. However, if properly recognized and contained, the magnitude of impact should not extend past the immediate surrounding areas of a facility.

Management procedures
Soil conservation practices
Crop management practices
Sustainable irrigation and drainage management
Fertilizer management
Waste water management

Please explain
Today AB InBev manages the risks from wastewater with high organic or suspended solids content through effective wastewater management practices. Specifically, we have more than 97% of the effluent treated via BTS (Biological Treatment System). The 3% remaining is not treated internally but via municipal services with written agreements with authorities. To evaluate and measure success we have set our objective to reach 100% of all brewing sites with aerobic biological treatment using bacteria to metabolize the organic matter in the wastewater, resulting in microorganisms converting solids and allowing the settle-able solids to separate out. Anaerobic wastewater treatment is based on biological conversion of organic compounds by anaerobic microorganisms into biogas such as methane, which can be used as biogas to produce onsite energy. We engage in active support to farmers to measure and manage the amount of chemicals used in their agriculture processes, such as nitrogen use efficiency, total phosphorus applied, potassium use and sulphur application in relation to the grower’s field-by-field barley production and performance. This information is uploaded to www.smartbarley.com, where growers can then access over 40 crop performance metrics for each field using a unique login and password. We manage the risks of the potential impacts outlined through engaging in active support to farmers using this SmartBarley tool to measure and manage the amount of inputs used. Growers can anonymously benchmark their fields against other growers through a selection of metrics that represent their field productivity, input use efficiency and crop management practices. In addition, in 2020, building on our existing water partnership with The Nature Conservancy (TNC), we launched a partnership with TNC in regenerative agriculture, including initiatives that address soil health, biodiversity and water stewardship across our agriculture supply chain. Together, we developed a framework for designing impactful soil health programs, which launched on World Soil Day in December 2020.
Does your organization undertake a water-related risk assessment?
Yes, water-related risks are assessed

W3.3a

(W3.3a) Select the options that best describe your procedures for identifying and assessing water-related risks.

Direct operations

<table>
<thead>
<tr>
<th>Coverage</th>
<th>Full</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk assessment procedure</td>
<td>Water risks are assessed as part of other company-wide risk assessment system</td>
</tr>
<tr>
<td>Frequency of assessment</td>
<td>More than once a year</td>
</tr>
<tr>
<td>How far into the future are risks considered?</td>
<td>More than 6 years</td>
</tr>
<tr>
<td>Type of tools and methods used</td>
<td>Tools on the market, Enterprise Risk Management, Other</td>
</tr>
<tr>
<td>Tools and methods used</td>
<td>WRI Aqueduct, Internal company methods</td>
</tr>
</tbody>
</table>

Comment

We regularly update water risk assessments at our brewing and other manufacturing facilities throughout the world based on short- and long-term risks. First, we apply the World Resources Institute's (WRI) Aqueduct tool, using WRI 2040, and ask a small number of high-level questions. If the tool indicates that a particular facility may be at risk, we look deeper into that facility, covering areas of physical, regulatory and reputation risk using our own custom-designed assessment tool that requires action plans. Using the WRI 2040 filter we also projected anticipated water risk over this time period.

Supply chain

<table>
<thead>
<tr>
<th>Coverage</th>
<th>Full</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk assessment procedure</td>
<td>Water risks are assessed as part of other company-wide risk assessment system</td>
</tr>
<tr>
<td>Frequency of assessment</td>
<td>Annually</td>
</tr>
<tr>
<td>How far into the future are risks considered?</td>
<td>More than 6 years</td>
</tr>
<tr>
<td>Type of tools and methods used</td>
<td>Tools on the market, Other</td>
</tr>
<tr>
<td>Tools and methods used</td>
<td>Water Footprint Network Assessment tool, WRI Aqueduct, Internal company methods</td>
</tr>
</tbody>
</table>

Comment

AB InBev has undertaken a water footprinting analysis of all major crops based on the values provided by the Water Footprinting Network for each sourcing region. We also engage with local water stakeholders to verify the risk and seek ways to partner on solutions. We conduct water risk assessments with suppliers where it makes sense to do so. While this is not every supplier, it is every supplier we have identified from a company-wide assessment and determined to be a key supplier regarding water. Using the WRI 2040 filter we also projected anticipated water risk over this time period.

Other stages of the value chain

<table>
<thead>
<tr>
<th>Coverage</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk assessment procedure</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Frequency of assessment</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>How far into the future are risks considered?</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Type of tools and methods used</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Tools and methods used</td>
<td><Not Applicable></td>
</tr>
</tbody>
</table>

Comment

Not Applicable
Water availability at a basin/catchment level

Relevant, always included

Water is an essential ingredient in our product and for our supply chain. Our ability to both withdraw and discharge water, and the quality of that water, is monitored by our global supply organization with zone and facility involvement. To identify potential risk, we use a two-step process that uses the WRI Aqueduct tool and, when a facility has been identified as high risk, our own custom-designed assessment tool AB InBev Water Risk Toolkit for onsite use. We assembled a panel of experts on watersheds, water systems and sustainable agriculture. This advisory committee supports our strategy development and execution; provides feedback on the economic, environmental and social impacts of our initiatives; and makes introductions to relevant stakeholder groups. Water availability improvements are measured based on the indicator(s) of local relevance such as per capita or total renewable freshwater, demand vs supply, ground water depletion rates/op between abstraction and recharge, surface water levels, reduced variance in surface water and ground water levels during drought, water availability to communities. In 2018 we launched our 2025 Sustainability Goals. As we progress towards these 2025 goals, we aim to achieve measurable improvement in water availability and quality in 100% of our communities in high stress areas. In 2020, 100% of our sites located in high stress areas had conducted local outreach, analyzed the water challenges specific to their community and identified potential solutions—the first three steps of our seven-step watershed management process. In 78% of these sites, we have started implementation of solutions such as infrastructure improvements, ecosystem restoration and other nature-based solutions and improvements in water governance. We have already started piloting the process of demonstrating measurable impact of these solutions on water availability and quality in two locations. For example, in Bucaramanga, Colombia, we have been funding mPamara, a project that partners with local farmers to protect and restore the buffer zone of the High Andean Wetland of Santurban to enhance water availability and regulation through conservation agreements and sustainable practices.

Other contextual issues, please specify

Not considered

Not applicable
Which of the following stakeholders are considered in your organization’s water-related risk assessments?

- Employees
- Local communities
- NGOs
- Customers
- Investors

Employees are important to our risk assessment process because our key investors may be concerned about water issues related to our business and want assurance that we are managing them appropriately in order to invest. As a result of our own supply chain or interruption of our brewing operations due to lack of sufficient clean water availability could potentially have a negative impact on production or earnings. We engage with investors on water risk using a variety of methods. These include communication channels such as our annual financial report and corporate sustainability report, investor presentations on water risk and our responses to the CDP carbon, water and supply chain questionnaires; and direct interaction through our Investor Relations team. We made a direct presentation to shareholders on water risk and our response strategies in Brussels. (AB InBev participated in an investor session about water with the CDP to fully understand the concerns about analysts and investors about water related risks.)

Local communities

We have a vested interest in ensuring an abundant supply of fresh water for our company and for the communities where we operate. As a signatory to the UN CEO Water Mandate, a member of its steering committee, AB InBev has integrated the Mandate’s six core elements which include public policy, community engagement and transparency among other elements. Stakeholder engagement is a formal and mandatory step in the AB InBev 7 step water management approach. Our method of engagement with local communities is to get input into our risk strategies through meetings, provide our expertise and learn from local experience, and bring disparate parties together to develop solutions to address water problems. Following completion of an asset which involves both a parcel of export water and the entirety of the environmental water, we assess the impact of our actions. The lessons learned advisory committee continues to support our strategy development and execution, provides feedback on the economic, environmental and social impacts of our initiatives, and makes introductions to relevant stakeholder groups. These local communities are always included in our risk assessments because not only do they contribute to and engage with our facilities, but also, they are areas where our employees live. For example, in 2020 we piloted a new water project in Zacatecas, Mexico focused on engaging local farmers in water conservation efforts that earned funding from the German Agency for International Cooperation (GIZ) through the prestigious DevilishPPP development grant, which will give us the opportunity to implement our project sustainably over the next three years.

NGOs

NGOs are an important component of our water risk assessment and a key stakeholder because of their shared belief that measurable impact at scale is the next frontier for water stewardship. NGOs can provide critical knowledge of specific issues and locations, helping identify and manage water risk. NGOs provide a richer stakeholder tapestry on views on the particular water risk our operations face and often provide valuable perspectives on the state of water sources. For example, our Huachip Brewery in Lima is located in a growing industrial area. While assessments indicate there is currently enough water for the region, the increasing number of water users and the generally unmonitored extraction of water are creating future water scarcity concerns. Our method of engagement to support the development of a more structured management of natural resources, is to have meetings with local NGOs, to join with the local water and environmental communities, to actively engage in the assessment and to participate in the development of new environmental regulations. We have also strengthened our relationship with several key stakeholders, including public and private sector experts and NGOs, to better understand and address local water issues. In addition, in 2020 we continued to strengthen our global water partnerships with WWF and TNC to invest financial and technical resources in efforts such as green infrastructure projects and reforestation projects, habitat restoration and improved water infrastructure. With WWF, we made further progress in the establishment or integration of water funds in Argentina, Mexico and Colombia and began measuring the impact of watershed solutions implemented in Colorado and California in the US in 2020. Through our partnership with WWF, we continued implementing identified solutions to local water challenges after having accomplished in-depth situational analyses in our countries of focus: Bolivia, Mozambique, Uganda and Zambia. In addition, local stakeholders such as community groups and more formalized NGOs are also involved.

Other water users at a basin/catchment level

Other water users at a local level are important factors in our water risk assessments these other users include businesses, institutions, residents and local agriculture. Ensuring access to fresh water for our facilities and the communities and regions surrounding them is a high priority for us, especially since some of our facilities are located in water-stressed areas. Our watershed protection strategy includes identifying the key stakeholders involved in issues and root causes. We develop strategic partnerships with local stakeholders and invest in the long-term understanding, conservation and restoration of stressed watersheds as an integral part of our water stewardship strategy. For example, in 2020 we supported the work of four water health centers and two automated water dispensing units in India to make water accessible for drinking and handwashing for 120,000 people.

Regulators

Our watershed protection strategy includes stakeholder mapping and engagement covering key stakeholders with engagement collaborator plans, including regulatory agencies. Our internal water risk tool assesses risk across four dimensions, including regulatory risk, based on responses to a series of detailed questions across these dimensions. The tool is completed at the facility level on an annual basis as well as reviewed in a quarterly basis. Based on this assessment, we participate in meetings with regulatory entities at a variety of levels so that we can understand potential concerns, interact with regulators and gather information important to our understanding of water risk, and provide input and feedback to them as appropriate. In the USA, water authorities are key stakeholders in our efforts in Fort Collins and Los Angeles to improve water use management and watershed security. For example, our 2020 water stewardship strategy included a depleted aquifer requirement for urban water users, which limits the amount of water that can be withdrawn from an aquifer.

River basin management authorities

Our watershed protection strategy includes stakeholder mapping and engagement covering key stakeholders with engagement collaborator plans, including regulatory agencies. Basin Committees and authorities are important stakeholders because they provide local context of the area and contain shared beliefs about sustainable watersheds and may play a role in water regulation structures. Our internal water risk tool assesses risk across four dimensions, including regulatory and reputation risk, based on responses to a series of detailed questions across these dimensions. The tool is completed at the facility level on an annual basis as well as reviewed on a quarterly basis. Based on this assessment, we participate in meetings at a variety of levels so that we can understand concerns, interact with members and gather information important to our understanding of water risk, and provide input and feedback. In Georgia, the only hops growing region in South Africa, we partnered with WWF to promote ecosystem restoration to improve water security. This work involved engaging key stakeholders such as the local water authority and the watershed management authority.

Statutory special interest groups at a local level

Local catchment authorities are essential as they often represent the water interests of other water users, who may require access to water as our own operations do. It is therefore important to engage such interest groups to avoid conflict on water allocation decisions. Our internal water risk tool assesses risk across four dimensions, including regulatory and reputation risk, based on responses to a series of detailed questions across these dimensions. This tool is completed at the facility level on an annual basis as well as reviewed on a quarterly basis. Based on this assessment, we participate in meetings at a variety of levels so that we can understand concerns, interact with members and gather information important to our understanding of water risk, and provide input and feedback. In Bolivia, organized community groups allocate water to users such as our breweries on an annual basis and it is important that they are informed of our responsible water and watershed protection efforts.

Suppliers

Water is an essential ingredient in our product and for our agricultural supply chain. We work closely with our barley and other agricultural ingredient suppliers on this issue, providing tools and knowledge-sharing opportunities. Suppliers can also provide local expertise and understand our needs which can improve and strengthen our local relationships. Our SmartBarley partnership is an example of how we include our suppliers in our risk assessments. Our SmartBarley program includes not benchmarking on aspects such as yield and resource use (e.g. water), but also a portfolio of initiatives focused on research, innovation and technology, innovation as well as a People, Planet, and Profit framework focused on research, innovation and technology. In 2020, more than 500 farmers had participated in the SmartBarley program. In 2020, we also worked with TechnoServe, an international development nonprofit that connects small-scale farmers and suppliers with private sector partners, to build a global toolkit to help support our teams in building strong smallholder programs. Through our Eclipse Platform we engage directly with major suppliers on shared sustainability opportunities including the potential for the reduction of water use. We engaged with our suppliers in reducing water use internally and to collaborate with watershed improvements, including the Water Resilience Coalition, part of the UN CEO Water Mandate.

Water utilities at a local level

We include water suppliers and utilities in our risk assessments because they contribute a better understanding of the specific water risk and potential solutions at the local level. We strive to maintain good relationships with these suppliers. We have ongoing and direct communications with water utility and water supplier employees to discuss contracts as well as current and potential concerns with water users and suppliers. For example, in 2020 as part of our supply and water quality. For example, in 2020, we continued our engagement in the Polokwane Water Partnership project. The project aims to develop a Water Conservation and Water Demand Management strategy and business plan for the City of Polokwane, to reduce water losses, unbillable and unaccounted for water.

Other stakeholder, please specify

Not considered Not applicable
W3.3d

(W3.3d) Describe your organization's process for identifying, assessing, and responding to water-related risks within your direct operations and other stages of your value chain.

Immediate operational water risk is considered on a 3-5-year basis while planning for new facilities such a brewery requires a 25-30 year view. Water availability and quality is monitored by our global supply organization with zone and facility involvement. To identify potential risk, we employ a two-step process using WRI Aqueduct tool and, for high risk facilities, our own custom water assessment tool for onsite use. The rationale for these tools is to provide visibility of our operational resilience and to inform the appropriate action and investment to manage water related risk. We work to preserve and improve access to fresh water through collaboration with stakeholders. To help mitigate water-related risks within our direct operations and other stages of our value chain we’ve established a 2025 goal, with a baseline in FY2017, to measurably improve water availability and quality within all of the communities identified as high-risk in which we operate. As of 2020, 100% of our sites located in high stress areas had conducted local outreach, analyzed the water challenges specific to their community and identified potential solutions—the first three steps of our seven-step watershed management process. In 78% of these sites, we have started implementation of solutions such as infrastructure improvements, ecosystem restoration and other nature-based solutions and improvements in water governance. We have already started piloting the process of demonstrating measurable impact of these solutions on water availability and quality in two locations. The supply chain water risk is measured via a separate tool to assess water risk via WWF and WRI tools for all sourcing areas, informing further analysis based on volume sourced, stakeholder concerns and the impact on cost and quality of sourcing materials. For example, if sourcing a commodity such as barley in South Africa, response options would focus on managing water related risk or finding alternative sourcing areas nearby. The relevant improvement in water availability (e.g. dam level) or quality (e.g. pH) will be based on local water risk. Relevant will be a meaningful, measurable impact compared to the scientific definition of the water challenge in the specified region.

W4. Risks and opportunities

W4.1

(W4.1) Have you identified any inherent water-related risks with the potential to have a substantive financial or strategic impact on your business?

Yes, both in direct operations and the rest of the value chain.

W4.1a

(W4.1a) How does your organization define substantive financial or strategic impact on your business?

(i) Clean water is a limited resource in many parts of the world, facing unprecedented challenges from climate change and the resulting change in precipitation patterns and frequency of extreme weather, as well as over-exploitation, increasing pollution, and poor water management. As demand for water continues to increase, water becomes scarcer and the quality of available water deteriorates, we may be affected by increasing production costs or capacity constraints, which could have a substantive negative impact on our business and results of operations, including our supply chain. In this instance, we define substantive change as change driven by water related events or trends that has the potential to cause significant impact on business, operations, assets, revenue or expenditures where we are not able to manage the probable likelihood of that impact occurring. An example of substantive impact is investment requirements due to the risk of compromised water quality at our brewing operations. As of 2020, we have invested in and begun implementing solutions aimed at measurably improving water quality and availability at 78% of our at-risk sites, which includes infrastructure improvements, ecosystem restoration, and other nature-based solutions.

(ii) At AB InBev we have developed key performance indicators for our company and beverage supply chain to measure substantive change and to manage and reduce the likelihood of negative impacts occurring. Our goals are set at a level which measures substantive change for our company, such as the vital importance of sufficient amounts of good quality freshwater available for use. The indicators are:

1. By 2025 - The company has published a public goal to measurably improve water availability and quality in 100% of our communities facing water stress. In each of these communities, specific targets and goals are being set based on the relevant local water risks and priority response areas.

2. By 2025 - Reduce global water usage to a leading-edge 2.8 hectoliters of water per hectoliter of production. Although we achieved this goal in 2019, we are continuing to strive for more demanding standards, including aiming for water use efficiency of 2.5 hl/hl across all our brewery sites and setting a more demanding ambition of 2.0 hl/hl for our breweries located in communities facing high risk for water stress, both by 2025. Through innovative technology and process improvements, in 2020 we reduced our per hl water use to 2.70 hl/hl.

In addition, facility-level goals are developed in alignment with corporate indicators. Goals drive our performance, and the collaborative process we use to set these targets helps ensure success. All levels of our organization are aligned on this approach and intensely focused on achieving set goals.

(iii) A risk creates a substantive change if it has a net financial impact of no less than 3% of the overall EBITDA of facility. Once exposed, these financial risks are then fed into the broader group-wide risk assessment reporting system. Most material risks will be addressed by adequate mitigation actions for which appropriate CAPEX and OPEX may be required.

(iv) We apply the definition of substantive change to both our direct operations and our supply chain.
(W4.1b) What is the total number of facilities exposed to water risks with the potential to have a substantive financial or strategic impact on your business, and what proportion of your company-wide facilities does this represent?

<table>
<thead>
<tr>
<th>Row</th>
<th>Total number of facilities exposed to water risk</th>
<th>% company-wide facilities this represents</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>37</td>
<td>1-25</td>
<td>All InBev has expanded our water risk assessment to include vertical operations, such as maltings, three of which were exposed to water risk. We report only high-risk brewing sites here in order to provide comparable data.</td>
</tr>
</tbody>
</table>

W4.1c

(W4.1c) By river basin, what is the number and proportion of facilities exposed to water risks that could have a substantive financial or strategic impact on your business, and what is the potential business impact associated with those facilities?

Country/Area & River basin

<table>
<thead>
<tr>
<th>Country/Area & River basin</th>
<th>Number of facilities exposed to water risk</th>
<th>% company-wide facilities this represents</th>
<th>Production value for the metals & mining activities associated with these facilities</th>
<th>% company's annual electricity generation that could be affected by these facilities</th>
<th>% company's global oil & gas production volume that could be affected by these facilities</th>
<th>% company's total global revenue that could be affected</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mozambique</td>
<td>1</td>
<td>Less than 1%</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td>1-10</td>
<td>None</td>
</tr>
<tr>
<td>Namibia</td>
<td>1</td>
<td>Less than 1%</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td>None</td>
</tr>
<tr>
<td>Other, please specify (Nampula watershed)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% company's total global revenue that could be affected</td>
<td>1-10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comment</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Country/Area & River basin

| South Africa | Other, please specify (Ithiayi watershed) |

Number of facilities exposed to water risk	1
% company-wide facilities this represents	Less than 1%
Production value for the metals & mining activities associated with these facilities	<Not Applicable>
% company's annual electricity generation that could be affected by these facilities	<Not Applicable>
% company's global oil & gas production volume that could be affected by these facilities	<Not Applicable>
% company's total global revenue that could be affected	1-10
Comment	None

Country/Area & River basin

| South Africa | Incomati |

Number of facilities exposed to water risk	1
% company-wide facilities this represents	Less than 1%
Production value for the metals & mining activities associated with these facilities	<Not Applicable>
% company's annual electricity generation that could be affected by these facilities	<Not Applicable>
% company's global oil & gas production volume that could be affected by these facilities	<Not Applicable>
% company's total global revenue that could be affected	1-10
Comment	None

Country/Area & River basin

| South Africa | Other, please specify (Newlands watershed) |

<p>| Number of facilities exposed to water risk | 1 |
| % company-wide facilities this represents | Less than 1% |
| Production value for the metals & mining activities associated with these facilities | <Not Applicable> |
| % company's annual electricity generation that could be affected by these facilities | <Not Applicable> |
| % company's global oil & gas production volume that could be affected by these facilities | <Not Applicable> |
| % company's total global revenue that could be affected | 1-10 |
| Comment | None |</p>
<table>
<thead>
<tr>
<th>Country/Area & River basin</th>
</tr>
</thead>
<tbody>
<tr>
<td>United Republic of Tanzania</td>
</tr>
<tr>
<td>Other, please specify (Dar es Salam watershed)</td>
</tr>
<tr>
<td>% company-wide facilities this represents Less than 1%</td>
</tr>
<tr>
<td>Production value for the metals & mining activities associated with these facilities <Not Applicable></td>
</tr>
<tr>
<td>% company's annual electricity generation that could be affected by these facilities <Not Applicable></td>
</tr>
<tr>
<td>% company's global oil & gas production volume that could be affected by these facilities <Not Applicable></td>
</tr>
<tr>
<td>% company's total global revenue that could be affected 1-10</td>
</tr>
<tr>
<td>Comment None</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Country/Area & River basin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uganda Nile</td>
</tr>
<tr>
<td>% company-wide facilities this represents Less than 1%</td>
</tr>
<tr>
<td>Production value for the metals & mining activities associated with these facilities <Not Applicable></td>
</tr>
<tr>
<td>% company's annual electricity generation that could be affected by these facilities <Not Applicable></td>
</tr>
<tr>
<td>% company's global oil & gas production volume that could be affected by these facilities <Not Applicable></td>
</tr>
<tr>
<td>% company's total global revenue that could be affected 1-10</td>
</tr>
<tr>
<td>Comment None</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Country/Area & River basin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zambia Zambezi</td>
</tr>
<tr>
<td>% company-wide facilities this represents Less than 1%</td>
</tr>
<tr>
<td>Production value for the metals & mining activities associated with these facilities <Not Applicable></td>
</tr>
<tr>
<td>% company's annual electricity generation that could be affected by these facilities <Not Applicable></td>
</tr>
<tr>
<td>% company's global oil & gas production volume that could be affected by these facilities <Not Applicable></td>
</tr>
<tr>
<td>% company's total global revenue that could be affected 1-10</td>
</tr>
<tr>
<td>Comment None</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Country/Area & River basin</th>
</tr>
</thead>
<tbody>
<tr>
<td>India Other, please specify (Aurangabad watershed)</td>
</tr>
<tr>
<td>% company-wide facilities this represents Less than 1%</td>
</tr>
<tr>
<td>Country/Area & River basin</td>
</tr>
<tr>
<td>---------------------------</td>
</tr>
<tr>
<td>India</td>
</tr>
<tr>
<td>Number of facilities exposed to water risk</td>
</tr>
<tr>
<td>% company-wide facilities this represents</td>
</tr>
</tbody>
</table>

Production value for the metals & mining activities associated with these facilities
<Not Applicable>

% company’s annual electricity generation that could be affected by these facilities
<Not Applicable>

% company’s global oil & gas production volume that could be affected by these facilities
<Not Applicable>

% company’s total global revenue that could be affected
1-10

Comment
None

<table>
<thead>
<tr>
<th>Country/Area & River basin</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>India</td>
<td>Godavari</td>
</tr>
<tr>
<td>Number of facilities exposed to water risk</td>
<td>1</td>
</tr>
<tr>
<td>% company-wide facilities this represents</td>
<td>Less than 1%</td>
</tr>
</tbody>
</table>

Production value for the metals & mining activities associated with these facilities
<Not Applicable>

% company’s annual electricity generation that could be affected by these facilities
<Not Applicable>

% company’s global oil & gas production volume that could be affected by these facilities
<Not Applicable>

% company’s total global revenue that could be affected
1-10

Comment
None

<table>
<thead>
<tr>
<th>Country/Area & River basin</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>India</td>
<td>Krishna</td>
</tr>
<tr>
<td>Number of facilities exposed to water risk</td>
<td>1</td>
</tr>
<tr>
<td>% company-wide facilities this represents</td>
<td>Less than 1%</td>
</tr>
</tbody>
</table>

Production value for the metals & mining activities associated with these facilities
<Not Applicable>

% company’s annual electricity generation that could be affected by these facilities
<Not Applicable>

% company’s global oil & gas production volume that could be affected by these facilities
<Not Applicable>

% company’s total global revenue that could be affected
1-10
<table>
<thead>
<tr>
<th>Country/Area & River basin</th>
<th>Company’s total global revenue that could be affected</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1-10</td>
</tr>
</tbody>
</table>

Comment

None

<table>
<thead>
<tr>
<th>Country/Area & River basin</th>
<th>Number of facilities exposed to water risk</th>
<th>% company-wide facilities this represents</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Less than 1%</td>
</tr>
</tbody>
</table>

Production value for the metals & mining activities associated with these facilities

<Not Applicable>

% company’s annual electricity generation that could be affected by these facilities

<Not Applicable>

% company’s global oil & gas production volume that could be affected by these facilities

<Not Applicable>

% company’s total global revenue that could be affected

1-10

Comment

None

<table>
<thead>
<tr>
<th>Country/Area & River basin</th>
<th>Number of facilities exposed to water risk</th>
<th>% company-wide facilities this represents</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Less than 1%</td>
</tr>
</tbody>
</table>

Production value for the metals & mining activities associated with these facilities

<Not Applicable>

% company’s annual electricity generation that could be affected by these facilities

<Not Applicable>

% company’s global oil & gas production volume that could be affected by these facilities

<Not Applicable>

% company’s total global revenue that could be affected

1-10

Comment

None

<table>
<thead>
<tr>
<th>Country/Area & River basin</th>
<th>Number of facilities exposed to water risk</th>
<th>% company-wide facilities this represents</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Less than 1%</td>
</tr>
</tbody>
</table>

Production value for the metals & mining activities associated with these facilities

<Not Applicable>

% company’s annual electricity generation that could be affected by these facilities

<Not Applicable>

% company’s global oil & gas production volume that could be affected by these facilities

<Not Applicable>

% company’s total global revenue that could be affected

1-10

Comment

None
<table>
<thead>
<tr>
<th>Country/Area & River basin</th>
<th>Number of facilities exposed to water risk</th>
<th>% company-wide facilities this represents</th>
<th>Production value for the metals & mining activities associated with these facilities</th>
<th>% company’s annual electricity generation that could be affected by these facilities</th>
<th>% company’s global oil & gas production volume that could be affected by these facilities</th>
<th>% company’s total global revenue that could be affected</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brazil Tocantins</td>
<td>1</td>
<td>Less than 1%</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td>1-10</td>
<td>None</td>
</tr>
<tr>
<td>Brazil Other, please specify (Aquiraz watershed)</td>
<td>1</td>
<td>Less than 1%</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td>1-10</td>
<td>None</td>
</tr>
<tr>
<td>Brazil Paraiba Do Sul</td>
<td>1</td>
<td>Less than 1%</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td>1-10</td>
<td>None</td>
</tr>
</tbody>
</table>
Country/Area & River basin

<table>
<thead>
<tr>
<th>Brazil</th>
<th>Parana</th>
</tr>
</thead>
</table>

Number of facilities exposed to water risk
2
% company-wide facilities this represents
Less than 1%
Production value for the metals & mining activities associated with these facilities
<Not Applicable>
% company’s annual electricity generation that could be affected by these facilities
<Not Applicable>
% company’s global oil & gas production volume that could be affected by these facilities
<Not Applicable>
% company’s total global revenue that could be affected
1-10
Comment
None

Country/Area & River basin

<table>
<thead>
<tr>
<th>Brazil</th>
<th>Other, please specify (Rio de Janeiro watershed)</th>
</tr>
</thead>
</table>

Number of facilities exposed to water risk
1
% company-wide facilities this represents
Less than 1%
Production value for the metals & mining activities associated with these facilities
<Not Applicable>
% company’s annual electricity generation that could be affected by these facilities
<Not Applicable>
% company’s global oil & gas production volume that could be affected by these facilities
<Not Applicable>
% company’s total global revenue that could be affected
1-10
Comment
None

Country/Area & River basin

<table>
<thead>
<tr>
<th>Brazil</th>
<th>Sao Francisco</th>
</tr>
</thead>
</table>

Number of facilities exposed to water risk
1
% company-wide facilities this represents
Less than 1%
Production value for the metals & mining activities associated with these facilities
<Not Applicable>
% company’s annual electricity generation that could be affected by these facilities
<Not Applicable>
% company’s global oil & gas production volume that could be affected by these facilities
<Not Applicable>
% company’s total global revenue that could be affected
1-10
Comment
None
Country/Area & River basin

Dominican Republic | Other, please specify (Santo Domingo watershed)

Number of facilities exposed to water risk
1

% company-wide facilities this represents
Less than 1%

Production value for the metals & mining activities associated with these facilities
<Not Applicable>

% company’s annual electricity generation that could be affected by these facilities
<Not Applicable>

% company’s global oil & gas production volume that could be affected by these facilities
<Not Applicable>

% company’s total global revenue that could be affected
1-10

Comment
None

Country/Area & River basin

Argentina | Colorado (Argentina)

Number of facilities exposed to water risk
1

% company-wide facilities this represents
Less than 1%

Production value for the metals & mining activities associated with these facilities
<Not Applicable>

% company’s annual electricity generation that could be affected by these facilities
<Not Applicable>

% company’s global oil & gas production volume that could be affected by these facilities
<Not Applicable>

% company’s total global revenue that could be affected
1-10

Comment
None

Country/Area & River basin

Bolivia (Plurinational State of) | Amazonas

Number of facilities exposed to water risk
3

% company-wide facilities this represents
Less than 1%

Production value for the metals & mining activities associated with these facilities
<Not Applicable>

% company’s annual electricity generation that could be affected by these facilities
<Not Applicable>

% company’s global oil & gas production volume that could be affected by these facilities
<Not Applicable>

% company’s total global revenue that could be affected
1-10

Comment
None
Country/Area & River basin

<table>
<thead>
<tr>
<th>Mexico</th>
<th>Other, please specify (Guadalajara watershed)</th>
</tr>
</thead>
</table>

Number of facilities exposed to water risk
1
% company-wide facilities this represents
Less than 1%

Production value for the metals & mining activities associated with these facilities
<Not Applicable>

% company’s annual electricity generation that could be affected by these facilities
<Not Applicable>

% company’s global oil & gas production volume that could be affected by these facilities
<Not Applicable>

% company’s total global revenue that could be affected
1-10

Comment
None
<table>
<thead>
<tr>
<th>Country/Area & River basin</th>
<th>Number of facilities exposed to water risk</th>
<th>% company-wide facilities this represents</th>
<th>Production value for the metals & mining activities associated with these facilities</th>
<th>% company’s annual electricity generation that could be affected by these facilities</th>
<th>% company’s global oil & gas production volume that could be affected by these facilities</th>
<th>% company’s total global revenue that could be affected</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mexico</td>
<td>1</td>
<td>Less than 1%</td>
<td>Production value for the metals & mining activities associated with these facilities</td>
<td>Production value for the metals & mining activities associated with these facilities</td>
<td>Production value for the metals & mining activities associated with these facilities</td>
<td>Production value for the metals & mining activities associated with these facilities</td>
<td>None</td>
</tr>
<tr>
<td>United States of America</td>
<td>1</td>
<td>Less than 1%</td>
<td>Production value for the metals & mining activities associated with these facilities</td>
<td>Production value for the metals & mining activities associated with these facilities</td>
<td>Production value for the metals & mining activities associated with these facilities</td>
<td>Production value for the metals & mining activities associated with these facilities</td>
<td>None</td>
</tr>
<tr>
<td>South Africa</td>
<td>1</td>
<td>Less than 1%</td>
<td>Production value for the metals & mining activities associated with these facilities</td>
<td>Production value for the metals & mining activities associated with these facilities</td>
<td>Production value for the metals & mining activities associated with these facilities</td>
<td>Production value for the metals & mining activities associated with these facilities</td>
<td>None</td>
</tr>
</tbody>
</table>
% company’s total global revenue that could be affected
1-10

Comment
None

Country/Area & River basin

| United States of America | Other, please specify (Colorado River Basin) |

Number of facilities exposed to water risk
1

% company-wide facilities this represents
Less than 1%

Production value for the metals & mining activities associated with these facilities
<Not Applicable>

% company’s annual electricity generation that could be affected by these facilities
<Not Applicable>

% company’s global oil & gas production volume that could be affected by these facilities
<Not Applicable>

% company’s total global revenue that could be affected
1-10

Comment

W4.2
(W4.2) Provide details of identified risks in your direct operations with the potential to have a substantive financial or strategic impact on your business, and your response to those risks.

Country/Area & River basin

<table>
<thead>
<tr>
<th>Colombia</th>
<th>Magdalena</th>
</tr>
</thead>
</table>

Type of risk & Primary risk driver

<table>
<thead>
<tr>
<th>Physical</th>
<th>Declining water quality</th>
</tr>
</thead>
</table>

Primary potential impact

Constraint to growth

Company-specific description

The water risk was identified through our bespoke AB InBev water risk assessment tool and process. The findings included seasonable droughts which impact availability to our breweries and also quality concerns which increases our treatment costs and slow down production processes. The primary source of water for the city of Bucaramanga, Colombia—and our brewery there—is the Surata River, which originates in the Santurban High Andean Wetland. This fragile ecosystem is being affected by agricultural practices, formal and informal mining, deforestation and rising global temperatures, resulting in water availability and quality challenges. Water scarcity or poor water quality may affect AB InBev by increasing production costs and capacity constraints, which could adversely affect AB InBev's business and results of operations. AB InBev's operations are subject to environmental regulations, which could expose it to significant compliance costs and litigation relating to environmental issues.

Timeframe

More than 6 years

Magnitude of potential impact

Medium

Likelihood

Unlikely

Are you able to provide a potential financial impact figure?

Yes, a single figure estimate

Potential financial impact figure (currency)

3150000

Potential financial impact figure - minimum (currency)

<Not Applicable>

Potential financial impact figure - maximum (currency)

<Not Applicable>

Explanation of financial impact

Although difficult to quantify, the potential impact could result in up to 3,150,000 USD per annum of increased water treatment costs. This was calculated by utilizing internal company methodologies and data provided by our VPO environmental management system. In addition, it is potentially possible to suffer production losses of 3 Million USD in extreme situations.

Primary response to risk

Other, please specify (Engagement with other stakeholders in the river basin)

Description of response

We are a founding partner of the Alianza BioCuenca, the water fund for Norte de Santander, where 70% of the Santurban High Andean Wetland is located. The Alianza BioCuenca is the operator of the MIParamo watershed protection project, partners with local farmers living in the buffer zone of the High Andean Wetland of Santurbán. Through the partnership, the farmers sign voluntary conservation agreements, committing to preserve and restore the forest, and in return receive support for more sustainable and profitable farming. The aim is to protect and restore the buffer zone of the High Andean Wetland to enhance water regulation and availability. As of 2020, more than 4700 hectares of forest were protected, more than 266,000 trees were planted, and more than 820 hectares of land were under sustainable agriculture practices through the project.

Cost of response

500000

Explanation of cost of response

The cost of response strategy was determined based on the cost of and investment in the current initiatives we have in place. These are focused on reducing our water use and engaging local stakeholders to effect change in the region. The cost is based on scientific analysis, reforestation, conservation practices and project management.

W4.2a
Provide details of risks identified within your value chain (beyond direct operations) with the potential to have a substantive financial or strategic impact on your business, and your response to those risks.

Country/Area & River basin

Mexico

Other, please specify (Guanajuato)

Stage of value chain

Supply chain

Type of risk & Primary risk driver

Physical

Increased water stress

Primary potential impact

Supply chain disruption

Company-specific description

For AB InBev, water is required by our suppliers for the agricultural production of barley, which forms the basis of inputs to brewing beer. Insufficient water availability can impact crop yields and quality. AB InBev sources a significant proportion of its barley in Mexico from Guanajuato. As a result of relatively controlled growing conditions, irrigated barley from Guanajuato, in the Bajio region of Mexico, is considered reliably high yielding and high quality and compared to some other crops grown in the region, barley as relatively low net water consumption per hectare. However, due to anticipated water availability concerns we have already reduced sourcing of irrigated barley from the region. Aquifers in the region are under pressure and more than 80% of water abstraction in the region is for agriculture.

Timeframe

More than 6 years

Magnitude of potential impact

Medium-low

Likelihood

More likely than not

Are you able to provide a potential financial impact figure?

Yes, a single figure estimate

Potential financial impact figure (currency)

700000

Potential financial impact figure - minimum (currency)

<Not Applicable>

Potential financial impact figure - maximum (currency)

<Not Applicable>

Explanation of financial impact

Although difficult to quantify, the potential impact could result in up to 700,000 USD per annum of increased costs associated with having to import the approximate amount of barley that is serviced by the Guanajuato water fund. This is a projection of potential increased costs.

Primary response to risk

Supplier engagement

Other, please specify (Supplier diversification)

Description of response

In 2020, our Mexican subsidiary Grupo Modelo joined the Guanajuato water fund to address the water risks in the region; we see participation in the fund as critical to scaling its impact and maintaining the viability of the irrigated barley production region in the long-term. In partnership with the government and water fund, we aim to improve sustainable water management in Guanajuato by maximizing water efficiency in gravity irrigation. The initiative consists of supporting farmers with land leveling using laser technology to correct water conduction in the field; technical assistance and training on rational use of water to reduce water consumption and increase productivity; and monitoring and evaluation.

Cost of response

70000

Explanation of cost of response

This was AB InBev’s budgeted contribution to the Guanajuato water fund in 2020.

Are you able to provide a potential financial impact figure?

Yes, a single figure estimate

Potential financial impact figure (currency)

700000

Potential financial impact figure - minimum (currency)

<Not Applicable>

Potential financial impact figure - maximum (currency)

<Not Applicable>

Explanation of financial impact

Although difficult to quantify, the potential impact could result in up to 700,000 USD per annum of increased costs associated with having to import the approximate amount of barley that is serviced by the Guanajuato water fund. This is a projection of potential increased costs.

Primary response to risk

Supplier engagement

Other, please specify (Supplier diversification)

Description of response

In 2020, our Mexican subsidiary Grupo Modelo joined the Guanajuato water fund to address the water risks in the region; we see participation in the fund as critical to scaling its impact and maintaining the viability of the irrigated barley production region in the long-term. In partnership with the government and water fund, we aim to improve sustainable water management in Guanajuato by maximizing water efficiency in gravity irrigation. The initiative consists of supporting farmers with land leveling using laser technology to correct water conduction in the field; technical assistance and training on rational use of water to reduce water consumption and increase productivity; and monitoring and evaluation.

Cost of response

70000

Explanation of cost of response

This was AB InBev’s budgeted contribution to the Guanajuato water fund in 2020.
Primary water-related opportunity
Cost savings

Company-specific description & strategy to realize opportunity

This opportunity is strategic to AB InBev as it is designed to improve the cost effectiveness of operational processes, use technology in new and innovative ways, and rethink business strategy to increase water efficiency in direct operations and take advantage of improved brand value. We are implementing this strategy through our management system and extensive partnership projects. As an example of results, our efforts to achieve our water use goal resulted in savings of nearly 50 million USD over the past 5 years. In addition, we have reduced global water usage to a leading-edge 2.70 hectoliter of water per hectoliter of production - this represents an 37% reduction since 2009. At the heart of these efforts is the Voyager Plant Optimization (VPO) global management system that helps employees manage risks as well as find efficiency opportunities. The VPO tool identified water savings achieved by sites in South America through effluent reuse in cooling towers, and these measures then rolled out in Middle Americas, resulting in water savings. VPO also enables the sharing of good practices throughout the company. For example, in 2020 we completed a pilot program with the supply team in Europe focused on using artificial intelligence to analyze water resource and utilization in our beer manufacturing facilities. The technology has the potential to pinpoint anomalies in our most problematic water lines, helping to reduce water usage in the brewing process. We also piloted a new water project in Zacatecas, Mexico focused on helping to recharge the depleted aquifer by helping farmers switch to drip irrigation to reduce their water consumption. The project has earned funding from the German Agency for International Cooperation (GIZ) through the prestigious DeveloPPP development grant, which will give us the opportunity to implement our project sustainably over the next three years.

Estimated timeframe for realization

Current - up to 1 year

Magnitude of potential financial impact
Low-medium

Are you able to provide a potential financial impact figure?
Yes, a single figure estimate

Potential financial impact figure (currency)
10000000

Potential financial impact figure – minimum (currency)
<Not Applicable>

Potential financial impact figure – maximum (currency)
<Not Applicable>

Explanation of financial impact

Our efforts to achieve our water use efficiency goal resulted in savings of nearly 50 million USD over the past 5 years. This was about $10,000,000 in 2020. The $10 million potential financial impact figure is based on the comparison of the projected total cost of water use without any savings implemented and then compared with actual spent on water in total brewing.

Type of opportunity
Markets

Primary water-related opportunity
Increased brand value

Company-specific description & strategy to realize opportunity

This opportunity is strategic to AB InBev as demonstrating water stewardship can improve brand value and community relations whilst boosting the resilience of our supply chain. We have also committed to helping our independent barley growers improve their water productivity and are working with governments, communities and NGOs on watershed protection measures in key areas around the world. For example, in South Africa, a water- stressed country ranked as the 30th driest in the world, recent droughts have placed agriculture under even more pressure. We play a leading role in the Strategic Water Partners Network (SWPN), through which government and the private sector are working together to address pressing water challenges in South Africa. We’ve supported important projects such as the Vaalharts Irrigation Scheme, to select the best data logger and internet platform for optimal data tracking and management and have subsequently supported the roll out of the system across multiple irrigation sites. This has helped save water and supported farmers to make informed decisions on crop management based on water availability.

Estimated timeframe for realization

4 to 6 years

Magnitude of potential financial impact
Low-medium

Are you able to provide a potential financial impact figure?
Yes, a single figure estimate

Potential financial impact figure (currency)
1000000

Potential financial impact figure – minimum (currency)
<Not Applicable>

Potential financial impact figure – maximum (currency)
<Not Applicable>

Explanation of financial impact

While difficult to quantify the benefits from mitigating the impact of a watershed event, we estimate it could approach 1,000,000 USD. This impact figure would include the cost of shifting sourcing of barley to a different area, impact on malting efficiency, transport costs and disruption to production, leading to sales disruption.

Type of opportunity
Markets

Primary water-related opportunity
Increased brand value

Company-specific description & strategy to realize opportunity

This opportunity is strategic to AB InBev as raising awareness of the global water crisis through consumer engagement will directly impact brand value through consumer perceptions of the brand into the future. To do so, our global brand, Stella Artois, runs campaigns with the NGO Water.org to help raise awareness of the global water crisis and allow consumers to contribute to the cause. We created limited-edition Stella Artois chalices, designed by developing-world artists, and the proceeds go to Water.org.
which will help Water.org provide five years' access to safe water for one person in the developing world for each chalice sold. Apart from the very positive impact on people's lives, the results of the campaign have delivered tangible brand value.

Estimated timeframe for realization
1 to 3 years

Magnitude of potential financial impact
Medium-high

Are you able to provide a potential financial impact figure?
Yes, an estimated range

Potential financial impact figure (currency)
<Not Applicable>

Potential financial impact figure – minimum (currency)
1

Potential financial impact figure – maximum (currency)
10000000

Explanation of financial impact
Although difficult to quantify, AB InBev has multiple brands which each grossed over one billion USD in revenue in 2020, and two of our brands—Budweiser and Corona—were named the two most valuable beer brands in the world by Interbrand in their list of 2020’s Best Global Brands and they each integrate sustainability in their brand identity. If sales for one of these brands increased by just 1% as a result of increased brand value, AB InBev could realize 10 million USD in additional revenue. Despite the COVID-19 pandemic, in the second half of 2020 our global brands were back to growth, increasing volume by 3.1% versus the second half of 2019 outside of home markets. Michelob Ultra, which continued to grow by double digits in 2020 and remained the number one share gainer in the beer category in the US, has integrated its sustainability credentials into the brand.

W5. Facility-level water accounting

W5.1

(W5.1) For each facility referenced in W4.1c, provide coordinates, water accounting data, and a comparison with the previous reporting year.

Facility reference number
Facility 1

Facility name (optional)
Maputo

Country/Area & River basin

<table>
<thead>
<tr>
<th>Latitude</th>
<th>Maputo</th>
</tr>
</thead>
<tbody>
<tr>
<td>-25.966</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Longitude</th>
<th>Maputo</th>
</tr>
</thead>
<tbody>
<tr>
<td>32.582</td>
<td></td>
</tr>
</tbody>
</table>

Located in area with water stress
Yes

Primary power generation source for your electricity generation at this facility
<Not Applicable>

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
269.46

Comparison of total withdrawals with previous reporting year
Much lower

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
0

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
269.4635
Total water discharges at this facility (megaliters/year)
206.14

Comparison of total discharges with previous reporting year
Much lower

Discharges to fresh surface water
206.141777

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
63.32

Comparison of total consumption with previous reporting year
Lower

Please explain
The coordinates of each facility represent one facility and are not an aggregate of multiple locations

Facility reference number
Facility 2

Facility name (optional)
Nampula

Country/Area & River basin
Mozambique

Located in area with water stress
Yes

Primary power generation source for your electricity generation at this facility
<Not Applicable>

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
194.7

Comparison of total withdrawals with previous reporting year
Lower

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
0

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
194.705

Total water discharges at this facility (megaliters/year)
130.56

Comparison of total discharges with previous reporting year
About the same

Discharges to fresh surface water
130.561249

Discharges to brackish surface water/seawater
0

Discharges to groundwater
CDP
Facility reference number
Facility 3

Facility name (optional)
Namibia

Country/Area & River basin

| Namibia | Other, please specify (Namibia watershed) |

Latitude
21.9675

Longitude
16.8975

Located in area with water stress
Yes

Primary power generation source for your electricity generation at this facility
<Not Applicable>

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
70.51

Comparison of total withdrawals with previous reporting year
Lower

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0.3775998401

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
37.4971141734

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
32.6365204863

Total water discharges at this facility (megaliters/year)
48.6

Comparison of total discharges with previous reporting year
About the same

Discharges to fresh surface water
0

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
48.6

Total water consumption at this facility (megaliters/year)
64.14

Comparison of total consumption with previous reporting year
About the same

Please explain
The coordinates of each facility represent one facility and are not an aggregate of multiple locations
<table>
<thead>
<tr>
<th>Facility reference number</th>
<th>Facility 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facility name (optional)</td>
<td>Chamdo</td>
</tr>
<tr>
<td>Country/Area & River basin</td>
<td>South Africa</td>
</tr>
</tbody>
</table>

Latitude
-26.2

Longitude
27.8

Located in area with water stress
Yes

Primary power generation source for your electricity generation at this facility
<Not Applicable>

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
653.65

Comparison of total withdrawals with previous reporting year
Much lower

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
0

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
653.65739587

Total water discharges at this facility (megaliters/year)
450.59

Comparison of total discharges with previous reporting year
Much higher

Discharges to fresh surface water
0

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
450.59877077

Total water consumption at this facility (megaliters/year)
203.05

Comparison of total consumption with previous reporting year
About the same

Please explain
The coordinates of each facility represent one facility and are not an aggregate of multiple locations

<table>
<thead>
<tr>
<th>Facility reference number</th>
<th>Facility 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facility name (optional)</td>
<td>Ibhayi</td>
</tr>
<tr>
<td>Country/Area & River basin</td>
<td>South Africa</td>
</tr>
</tbody>
</table>

Latitude
-33.9395
Longitude
25.571

Located in area with water stress
Yes

Primary power generation source for your electricity generation at this facility
<Not Applicable>

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
515.1

Comparison of total withdrawals with previous reporting year
Lower

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
0

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
515.10596681

Total water discharges at this facility (megaliters/year)
362.81

Comparison of total discharges with previous reporting year
About the same

Discharges to fresh surface water
0

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
362.81286681

Total water consumption at this facility (megaliters/year)
152.29

Comparison of total consumption with previous reporting year
About the same

Please explain
The coordinates of each facility represent one facility and are not an aggregate of multiple locations

Facility reference number
Facility 6

Facility name (optional)
Newlands

Country/Area & River basin
South Africa

Latitude
-33.9792

Longitude
18.45

Located in area with water stress
Yes

Primary power generation source for your electricity generation at this facility
<Not Applicable>

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
827.14
Comparison of total withdrawals with previous reporting year
Much lower
Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
361.7808956539
Withdrawals from brackish surface water/seawater
0
Withdrawals from groundwater - renewable
460.3121602996
Withdrawals from groundwater - non-renewable
0
Withdrawals from produced/entained water
0
Withdrawals from third party sources
5.0548540463
Total water discharges at this facility (megaliters/year)
547.13
Comparison of total discharges with previous reporting year
Lower
Discharges to fresh surface water
0
Discharges to brackish surface water/seawater
0
Discharges to groundwater
0
Discharges to third party destinations
547.1340648
Total water consumption at this facility (megaliters/year)
280.01
Comparison of total consumption with previous reporting year
Lower
Please explain
The coordinates of each facility represent one facility and are not an aggregate of multiple locations

<table>
<thead>
<tr>
<th>Facility reference number</th>
<th>Facility 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facility name (optional)</td>
<td>Polokwane</td>
</tr>
<tr>
<td>Country/Area & River basin</td>
<td>South Africa</td>
</tr>
</tbody>
</table>

Latitude
-23.9
Longitude
29.5
Located in area with water stress
Yes
Primary power generation source for your electricity generation at this facility
<Not Applicable>
Oil & gas sector business division
<Not Applicable>
Total water withdrawals at this facility (megaliters/year)
389.48
Comparison of total withdrawals with previous reporting year
Lower
Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0
Withdrawals from brackish surface water/seawater
0
Withdrawals from groundwater - renewable
0
Withdrawals from groundwater - non-renewable
Withdrawals from produced/entrained water 0
Withdrawals from third party sources 389.48815406
Total water discharges at this facility (megaliters/year) 265.85
Comparison of total discharges with previous reporting year Lower
Discharges to fresh surface water 0
Discharges to brackish surface water/seawater 0
Discharges to groundwater 0
Discharges to third party destinations 265.85194666
Total water consumption at this facility (megaliters/year) 123.63
Comparison of total consumption with previous reporting year About the same

Please explain The coordinates of each facility represent one facility and are not an aggregate of multiple locations

Facility reference number Facility 8
Facility name (optional) Dar es Salaam
Country/Area & River basin

<table>
<thead>
<tr>
<th>United Republic of Tanzania</th>
<th>Other, please specify (Dar es Salaam watershed)</th>
</tr>
</thead>
</table>

Latitude -6.829
Longitude 39.271
Located in area with water stress Yes
Primary power generation source for your electricity generation at this facility <Not Applicable>
Oil & gas sector business division <Not Applicable>
Total water withdrawals at this facility (megaliters/year) 448.4
Comparison of total withdrawals with previous reporting year About the same
Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes 0
Withdrawals from brackish surface water/seawater 0
Withdrawals from groundwater - renewable 270.2209142914
Withdrawals from groundwater - non-renewable 0
Withdrawals from produced/entrained water 0
Withdrawals from third party sources 178.1880857085
Total water discharges at this facility (megaliters/year) 348.3
Comparison of total discharges with previous reporting year About the same
Discharges to fresh surface water
348.30068762

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
100.1

Comparison of total consumption with previous reporting year
About the same

Please explain
The coordinates of each facility represent one facility and are not an aggregate of multiple locations

<table>
<thead>
<tr>
<th>Facility reference number</th>
<th>Facility name (optional)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facility 9</td>
<td>Mbarara</td>
</tr>
</tbody>
</table>

Country/Area & River basin
Uganda Nile

Latitude
-0.6133

Longitude
30.6583

Located in area with water stress
Yes

Primary power generation source for your electricity generation at this facility
<Not Applicable>

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
224.72

Comparison of total withdrawals with previous reporting year
About the same

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
30.528

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
0

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
194.201

Total water discharges at this facility (megaliters/year)
139.99

Comparison of total discharges with previous reporting year
About the same

Discharges to fresh surface water
139.9918195

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
84.73
Comparison of total consumption with previous reporting year
About the same

Please explain
The coordinates of each facility represent one facility and are not an aggregate of multiple locations

Facility reference number
Facility 10
Facility name (optional)
Lusaka

Country/Area & River basin

<table>
<thead>
<tr>
<th>Zambia</th>
<th>Zambezi</th>
</tr>
</thead>
</table>

Latitude
-15.411
Longitude
28.286

Located in area with water stress
Yes

Primary power generation source for your electricity generation at this facility
<Not Applicable>

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
277.84

Comparison of total withdrawals with previous reporting year
About the same

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0
Withdrawals from brackish surface water/seawater
0
Withdrawals from groundwater - renewable
273.8028222669
Withdrawals from groundwater - non-renewable
0
Withdrawals from produced/entrained water
0
Withdrawals from third party sources
4.04620618

Total water discharges at this facility (megaliters/year)
201.88

Comparison of total discharges with previous reporting year
About the same

Discharges to fresh surface water
201.884265447
Discharges to brackish surface water/seawater
0
Discharges to groundwater
0
Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
75.96

Comparison of total consumption with previous reporting year
About the same

Please explain
The coordinates of each facility represent one facility and are not an aggregate of multiple locations

Facility reference number
Facility 11
Facility name (optional)
Aurangabad
Country/Area & River basin

<table>
<thead>
<tr>
<th>India</th>
<th>Other, please specify (Aurangabad watershed)</th>
</tr>
</thead>
</table>

Latitude
19.8399

Longitude
75.2362

Located in area with water stress
Yes

Primary power generation source for your electricity generation at this facility
<Not Applicable>

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
120.18

Comparison of total withdrawals with previous reporting year
About the same

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
0

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
120.189

Total water discharges at this facility (megaliters/year)
87.21

Comparison of total discharges with previous reporting year
About the same

Discharges to fresh surface water
0

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
87.21762259

Total water consumption at this facility (megaliters/year)
32.97

Comparison of total consumption with previous reporting year
About the same

Please explain
The coordinates of each facility represent one facility and are not an aggregate of multiple locations

Country/Area & River basin

<table>
<thead>
<tr>
<th>India</th>
<th>Godavari</th>
</tr>
</thead>
</table>

Latitude
18.033

Longitude
78.266

Located in area with water stress
Yes
Facility 13: Hyderabad

<table>
<thead>
<tr>
<th>Country/Area & River basin</th>
<th>Krishna</th>
</tr>
</thead>
</table>

| Latitude | 17.385 |
| LongITUDE | 78.4867 |

Located in area with water stress
Yes

Facility reference number
Facility 13

Facility name (optional)
Hyderabad

Total water withdrawals at this facility (megaliters/year)
197.67

Comparison of total withdrawals with previous reporting year
Much lower

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
197.6704889999

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
0

Total water discharges at this facility (megaliters/year)
128.27

Comparison of total discharges with previous reporting year
Lower

Discharges to fresh surface water
0

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
128.2705675199

Total water consumption at this facility (megaliters/year)
69.39

Comparison of total consumption with previous reporting year
Lower

Please explain
The coordinates of each facility represent one facility and are not an aggregate of multiple locations
Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
0

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
74.118663

Total water discharges at this facility (megaliters/year)
56.92

Comparison of total discharges with previous reporting year
Lower

Discharges to fresh surface water
0

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
56.92872148

Total water consumption at this facility (megaliters/year)
17.18

Comparison of total consumption with previous reporting year
Lower

Please explain
The coordinates of each facility represent one facility and are not an aggregate of multiple locations

Facility reference number
Facility 14

Facility name (optional)
Neemrana

Country/Area & River basin
India

Latitude
27.975009

Longitude
76.389634

Located in area with water stress
Yes

Primary power generation source for your electricity generation at this facility
<Not Applicable>

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
38.18

Comparison of total withdrawals with previous reporting year
Much lower

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
38.183479

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
Total water discharges at this facility (megaliters/year)
28.12

Comparison of total discharges with previous reporting year
Lower

Discharges to fresh surface water
0

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
28.12763528

Total water consumption at this facility (megaliters/year)
10.05

Comparison of total consumption with previous reporting year
About the same

Please explain
The coordinates of each facility represent one facility and are not an aggregate of multiple locations

Facility reference number
Facility 15

Facility name (optional)
Sonipat

Country/Area & River basin

| India | Ganges - Brahmaputra |

Latitude
29

Longitude
77.1

Located in area with water stress
Yes

Primary power generation source for your electricity generation at this facility
<Not Applicable>

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
96.07

Comparison of total withdrawals with previous reporting year
About the same

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
96.079

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
0

Total water discharges at this facility (megaliters/year)
65.27

Comparison of total discharges with previous reporting year
About the same

Discharges to fresh surface water
0

Discharges to brackish surface water/seawater
0
Discharges to groundwater
0

Discharges to third party destinations
65.27019373

Total water consumption at this facility (megaliters/year)
30.8

Comparison of total consumption with previous reporting year
About the same

Please explain
The coordinates of each facility represent one facility and are not an aggregate of multiple locations

Facility reference number
Facility 16

Facility name (optional)
Bucaramanga

Country/Area & River basin

<table>
<thead>
<tr>
<th>Colombia</th>
<th>Magdalena</th>
</tr>
</thead>
</table>

Latitude
7.111

Longitude
-73.12

Located in area with water stress
Yes

Primary power generation source for your electricity generation at this facility
<Not Applicable>

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
504.51

Comparison of total withdrawals with previous reporting year
Lower

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
504.518

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
0

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
0

Total water discharges at this facility (megaliters/year)
340.77

Comparison of total discharges with previous reporting year
Lower

Discharges to fresh surface water
340.77361102

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
163.74

Comparison of total consumption with previous reporting year
Lower

Please explain
The coordinates of each facility represent one facility and are not an aggregate of multiple locations
Facility reference number
Facility 17

Facility name (optional)
Santo Domingo

Country/Area & River basin
Dominican Republic Other, please specify (Santo Domingo watershed)

Latitude
18.449444

Longitude
69.930277

Located in area with water stress
Yes

Primary power generation source for your electricity generation at this facility
<Not Applicable>

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
1365.38

Comparison of total withdrawals with previous reporting year
Lower

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
1365.38223992

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
0

Total water discharges at this facility (megaliters/year)
999.68

Comparison of total discharges with previous reporting year
Lower

Discharges to fresh surface water
0

Discharges to brackish surface water/seawater
999.682198

Discharges to groundwater
0

Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
365.69

Comparison of total consumption with previous reporting year
Lower

Please explain
The coordinates of each facility represent one facility and are not an aggregate of multiple locations

Facility reference number
Facility 18

Facility name (optional)
Ind La Constancia

Country/Area & River basin
El Salvador Lempa
Latitude
13.7484

Longitude
-89.1947

Located in area with water stress
Yes

Primary power generation source for your electricity generation at this facility
<Not Applicable>

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
400.3

Comparison of total withdrawals with previous reporting year
Much lower

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
2,274,788,1298

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
398,029,407,208

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
0

Total water discharges at this facility (megaliters/year)
266.78

Comparison of total discharges with previous reporting year
Higher

Discharges to fresh surface water
266,780,304,15218

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
133.52

Comparison of total consumption with previous reporting year
Much lower

Please explain
The coordinates of each facility represent one facility and are not an aggregate of multiple locations

Facility reference number
Facility 19

Facility name (optional)
Guadalajara

Country/Area & River basin
Mexico

Other, please specify (Guadalajara watershed)

Latitude
20.663333

Longitude
103.375277

Located in area with water stress
Yes

Primary power generation source for your electricity generation at this facility
<Not Applicable>

Oil & gas sector business division
<Not Applicable>
Total water withdrawals at this facility (megaliters/year)
1192.61
Comparison of total withdrawals with previous reporting year
Lower
Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0
Withdrawals from brackish surface water/seawater
0
Withdrawals from groundwater - renewable
1192.6124
Withdrawals from groundwater - non-renewable
0
Withdrawals from produced/entrained water
0
Withdrawals from third party sources
0
Total water discharges at this facility (megaliters/year)
766.59
Comparison of total discharges with previous reporting year
Lower
Discharges to fresh surface water
0
Discharges to brackish surface water/seawater
0
Discharges to groundwater
0
Discharges to third party destinations
766.59405528
Total water consumption at this facility (megaliters/year)
426.01
Comparison of total consumption with previous reporting year
About the same
Please explain
The coordinates of each facility represent one facility and are not an aggregate of multiple locations

Facility reference number
Facility 20
Facility name (optional)
Mexico Apan
Country/Area & River basin

<table>
<thead>
<tr>
<th>Mexico</th>
<th>Panuco</th>
</tr>
</thead>
</table>

Latitude
19.697461
Longitude
-98.539269
Located in area with water stress
Yes
Primary power generation source for your electricity generation at this facility
<Not Applicable>
Oil & gas sector business division
<Not Applicable>
Total water withdrawals at this facility (megaliters/year)
2333.95
Comparison of total withdrawals with previous reporting year
Higher
Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0
Withdrawals from brackish surface water/seawater
0
Withdrawals from groundwater - renewable
Withdrawals from groundwater - non-renewable 0
Withdrawals from produced/entrained water 0
Withdrawals from third party sources 0
Total water discharges at this facility (megaliters/year) 1523.29
Comparison of total discharges with previous reporting year Higher
Discharges to fresh surface water 1523.290248818
Discharges to brackish surface water/seawater 0
Discharges to groundwater 0
Discharges to third party destinations 0
Total water consumption at this facility (megaliters/year) 810.66
Comparison of total consumption with previous reporting year Higher
Please explain
The coordinates of each facility represent one facility and are not an aggregate of multiple locations

Facility reference number
Facility 21

Facility name (optional)
Torreon

Country/Area & River basin
Mexico Other, please specify (Torreon watershed)

Latitude
25.543888
Longitude
103.407222

Located in area with water stress
Yes

Primary power generation source for your electricity generation at this facility
<Not Applicable>

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year) 755.57
Comparison of total withdrawals with previous reporting year Lower
Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes 0
Withdrawals from brackish surface water/seawater 0
Withdrawals from groundwater - renewable 755.579
Withdrawals from groundwater - non-renewable 0
Withdrawals from produced/entrained water 0
Withdrawals from third party sources 0
Total water discharges at this facility (megaliters/year) 485.04
Comparison of total discharges with previous reporting year
Lower
Discharges to fresh surface water
485.0440274
Discharges to brackish surface water/seawater
0
Discharges to groundwater
0
Discharges to third party destinations
0
Total water consumption at this facility (megaliters/year)
270.53
Comparison of total consumption with previous reporting year
About the same
Please explain
The coordinates of each facility represent one facility and are not an aggregate of multiple locations

Facility reference number
Facility 22
Facility name (optional)
Zacatecas
Country/Area & River basin
Mexico
Other, please specify (Zacatecas watershed)
Latitude
22.9725
Longitude
102.7075
Located in area with water stress
Yes
Primary power generation source for your electricity generation at this facility
<Not Applicable>
Oil & gas sector business division
<Not Applicable>
Total water withdrawals at this facility (megaliters/year)
4350.52
Comparison of total withdrawals with previous reporting year
Lower
Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0
Withdrawals from brackish surface water/seawater
0
Withdrawals from groundwater - renewable
4350.5237344
Withdrawals from groundwater - non-renewable
0
Withdrawals from produced/entrained water
0
Withdrawals from third party sources
0
Total water discharges at this facility (megaliters/year)
2458.09
Comparison of total discharges with previous reporting year
Lower
Discharges to fresh surface water
2458.0984077
Discharges to brackish surface water/seawater
0
Discharges to groundwater
0
Discharges to third party destinations
0
Total water consumption at this facility (megaliters/year)
1892.42

Comparison of total consumption with previous reporting year
Lower

Please explain
The coordinates of each facility represent one facility and are not an aggregate of multiple locations

Facility reference number
Facility 23

Facility name (optional)
Ate

Country/Area & River basin
Peru Other, please specify (Ate watershed)

Latitude
-12.0231

Longitude
-76.8614

Located in area with water stress
Yes

Primary power generation source for your electricity generation at this facility
<Not Applicable>

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
1502.71

Comparison of total withdrawals with previous reporting year
Lower

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
1502.7124880906

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
0

Total water discharges at this facility (megaliters/year)
925.4

Comparison of total discharges with previous reporting year
Lower

Discharges to fresh surface water
0

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
925.4049560136

Total water consumption at this facility (megaliters/year)
577.3

Comparison of total consumption with previous reporting year
Lower

Please explain
The coordinates of each facility represent one facility and are not an aggregate of multiple locations

Facility reference number
Facility 24
<table>
<thead>
<tr>
<th>Facility name (optional)</th>
<th>Motupe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country/Area & River basin</td>
<td>Peru Other, please specify (Motupe watershed)</td>
</tr>
<tr>
<td>Latitude</td>
<td>-6.1545</td>
</tr>
<tr>
<td>Longitude</td>
<td>-79.7114</td>
</tr>
<tr>
<td>Located in area with water stress</td>
<td>Yes</td>
</tr>
<tr>
<td>Primary power generation source for your electricity generation at this facility</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Oil & gas sector business division</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Total water withdrawals at this facility (megaliters/year)</td>
<td>622.38</td>
</tr>
<tr>
<td>Comparison of total withdrawals with previous reporting year</td>
<td>Lower</td>
</tr>
<tr>
<td>Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes</td>
<td>0</td>
</tr>
<tr>
<td>Withdrawals from brackish surface water/seawater</td>
<td>0</td>
</tr>
<tr>
<td>Withdrawals from groundwater - renewable</td>
<td>622.3850625685</td>
</tr>
<tr>
<td>Withdrawals from groundwater - non-renewable</td>
<td>0</td>
</tr>
<tr>
<td>Withdrawals from produced/entrained water</td>
<td>0</td>
</tr>
<tr>
<td>Withdrawals from third party sources</td>
<td>0</td>
</tr>
<tr>
<td>Total water discharges at this facility (megaliters/year)</td>
<td>400.93</td>
</tr>
<tr>
<td>Comparison of total discharges with previous reporting year</td>
<td>Lower</td>
</tr>
<tr>
<td>Discharges to fresh surface water</td>
<td>0</td>
</tr>
<tr>
<td>Discharges to brackish surface water/seawater</td>
<td>0</td>
</tr>
<tr>
<td>Discharges to groundwater</td>
<td>400.9389938385</td>
</tr>
<tr>
<td>Discharges to third party destinations</td>
<td>0</td>
</tr>
<tr>
<td>Total water consumption at this facility (megaliters/year)</td>
<td>221.44</td>
</tr>
<tr>
<td>Comparison of total consumption with previous reporting year</td>
<td>About the same</td>
</tr>
</tbody>
</table>

Please explain
The coordinates of each facility represent one facility and are not an aggregate of multiple locations

<table>
<thead>
<tr>
<th>Facility reference number</th>
<th>Facility 25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facility name (optional)</td>
<td>Fort Collins</td>
</tr>
<tr>
<td>Country/Area & River basin</td>
<td>United States of America Other, please specify (Colorado (United States))</td>
</tr>
<tr>
<td>Latitude</td>
<td>34.2688</td>
</tr>
<tr>
<td>Longitude</td>
<td>-84.806</td>
</tr>
</tbody>
</table>
Located in area with water stress
Yes

Primary power generation source for your electricity generation at this facility
<Not Applicable>

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
1275.96

Comparison of total withdrawals with previous reporting year
About the same
Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0
Withdrawals from brackish surface water/seawater
0
Withdrawals from groundwater - renewable
0
Withdrawals from groundwater - non-renewable
0
Withdrawals from produced/entrained water
0
Withdrawals from third party sources
1275.9680290259

Total water discharges at this facility (megaliters/year)
224.23

Comparison of total discharges with previous reporting year
About the same
Discharges to fresh surface water
0
Discharges to brackish surface water/seawater
0
Discharges to groundwater
0
Discharges to third party destinations
224.2350040259

Total water consumption at this facility (megaliters/year)
1051.73

Comparison of total consumption with previous reporting year
About the same

Please explain
The coordinates of each facility represent one facility and are not an aggregate of multiple locations

Facility reference number
Facility 26

Facility name (optional)
Los Angeles

Country/Area & River basin
United States of America Other, please specify (Los Angeles)

Latitude
34.2214

Longitude
-118.477

Located in area with water stress
Yes

Primary power generation source for your electricity generation at this facility
<Not Applicable>

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
2502.74

Comparison of total withdrawals with previous reporting year
About the same
Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0
Withdrawals from brackish surface water/seawater
0
Withdrawals from groundwater - renewable
0
Withdrawals from groundwater - non-renewable
0
Withdrawals from produced/entrained water
0
Withdrawals from third party sources
2502.7498197
Total water discharges at this facility (megaliters/year)
1651.51
Comparison of total discharges with previous reporting year
About the same
Discharges to fresh surface water
0
Discharges to brackish surface water/seawater
0
Discharges to groundwater
0
Discharges to third party destinations
1651.5114087
Total water consumption at this facility (megaliters/year)
851.23
Comparison of total consumption with previous reporting year
About the same
Please explain
The coordinates of each facility represent one facility and are not an aggregate of multiple locations

<table>
<thead>
<tr>
<th>Facility reference number</th>
<th>Facility 27</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facility name (optional)</td>
<td>Mendoza</td>
</tr>
<tr>
<td>Country/Area & River basin</td>
<td>Argentina Colorado (Argentina)</td>
</tr>
</tbody>
</table>

Latitude
-32.8833
Longitude
-68.8167
Located in area with water stress
Yes
Primary power generation source for your electricity generation at this facility
<Not Applicable>
Oil & gas sector business division
<Not Applicable>
Total water withdrawals at this facility (megaliters/year)
253.13
Comparison of total withdrawals with previous reporting year
About the same
Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0
Withdrawals from brackish surface water/seawater
0
Withdrawals from groundwater - renewable
253.1339216
Withdrawals from groundwater - non-renewable
0
Withdrawals from produced/entrained water
0
Withdrawals from third party sources
0

Total water discharges at this facility (megaliters/year)
76.48

Comparison of total discharges with previous reporting year
About the same

Discharges to fresh surface water
76.4810416

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
176.65

Comparison of total consumption with previous reporting year
About the same

Please explain
The coordinates of each facility represent one facility and are not an aggregate of multiple locations

Facility reference number
Facility 28

Facility name (optional)
Cochabamba

Country/Area & River basin

Bolivia (Plurinational State of) Amazonas

Latitude
-17.4135

Longitude
-66.1707

Located in area with water stress
Yes

Primary power generation source for your electricity generation at this facility
<Not Applicable>

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
74.99

Comparison of total withdrawals with previous reporting year
About the same

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
32.4089820607

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
42.5826433892

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
0

Total water discharges at this facility (megaliters/year)
20.76

Comparison of total discharges with previous reporting year
About the same

Discharges to fresh surface water
20.76950045
Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
54.22

Comparison of total consumption with previous reporting year
About the same

Please explain
The coordinates of each facility represent one facility and are not an aggregate of multiple locations

<table>
<thead>
<tr>
<th>Facility reference number</th>
<th>Facility name (optional)</th>
<th>Country/Area & River basin</th>
<th>Primary power generation source for your electricity generation at this facility</th>
<th>Oil & gas sector business division</th>
<th>Total water withdrawals at this facility (megaliters/year)</th>
<th>Comparison of total withdrawals with previous reporting year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facility 29</td>
<td>Huari</td>
<td>Bolivia (Plurinational State of)</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td>40.33</td>
<td>About the same</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Latitude
-16.552

Longitude
-68.1482

Located in area with water stress
Yes

Primary power generation source for your electricity generation at this facility
<Not Applicable>

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
40.33

Comparison of total withdrawals with previous reporting year
About the same

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
20.230554591

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
20.1078273008

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
0

Total water discharges at this facility (megaliters/year)
12.49

Comparison of total discharges with previous reporting year
About the same

Discharges to fresh surface water
12.4992648

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
27.83

Comparison of total consumption with previous reporting year
About the same
Facility reference number
Facility 30

Facility name (optional)
Sacaba

Country/Area & River basin
Bolivia (Plurinational State of) Amazonas

Latitude
-17.4

Longitude
-66.04

Located in area with water stress
Yes

Primary power generation source for your electricity generation at this facility
<Not Applicable>

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
60.4

Comparison of total withdrawals with previous reporting year
About the same

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
60.40521525

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
0

Total water discharges at this facility (megaliters/year)
13.29

Comparison of total discharges with previous reporting year
About the same

Discharges to fresh surface water
13.29171525

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
47.11

Comparison of total consumption with previous reporting year
About the same

Please explain
The coordinates of each facility represent one facility and are not an aggregate of multiple locations

Facility reference number
Facility 31

Facility name (optional)
Anapolis

Country/Area & River basin
Brazil Tocantins
Latitude
-16.3333
Longitude
-48.9667
Located in area with water stress
Yes
Primary power generation source for your electricity generation at this facility
<Not Applicable>
Oil & gas sector business division
<Not Applicable>
Total water withdrawals at this facility (megaliters/year)
1072.44
Comparison of total withdrawals with previous reporting year
Lower
Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
642.8562954636
Withdrawals from brackish surface water/seawater
0
Withdrawals from groundwater - renewable
429.5897045363
Withdrawals from groundwater - non-renewable
0
Withdrawals from produced/entrained water
0
Withdrawals from third party sources
0
Total water discharges at this facility (megaliters/year)
468.73
Comparison of total discharges with previous reporting year
Lower
Discharges to fresh surface water
468.731745772
Discharges to brackish surface water/seawater
0
Discharges to groundwater
0
Discharges to third party destinations
0
Total water consumption at this facility (megaliters/year)
603.71
Comparison of total consumption with previous reporting year
About the same
Please explain
The coordinates of each facility represent one facility and are not an aggregate of multiple locations

Facility reference number
Facility 32
Facility name (optional)
Aquiraz
Country/Area & River basin
Brazil
Located in area with water stress
Yes
Primary power generation source for your electricity generation at this facility
<Not Applicable>
Oil & gas sector business division
<Not Applicable>
Total water withdrawals at this facility (megaliters/year)
1138.51

Comparison of total withdrawals with previous reporting year
Higher

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
95.8512664903

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
1.0476269637

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
1041.6142085459

Total water discharges at this facility (megaliters/year)
727.48

Comparison of total discharges with previous reporting year
Higher

Discharges to fresh surface water
727.481670905

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
411.03

Comparison of total consumption with previous reporting year
About the same

Please explain
The coordinates of each facility represent one facility and are not an aggregate of multiple locations

Facility reference number
Facility 33

Facility name (optional)
Jacarei

Country/Area & River basin
Brazil Paraíba Do Sul

Latitude
-23.3167

Longitude
-45.9667

Located in area with water stress
Yes

Primary power generation source for your electricity generation at this facility
<Not Applicable>

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
2239.71

Comparison of total withdrawals with previous reporting year
Lower

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
2239.714

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
0

Withdrawals from third party sources
1041.6142085459
Withdrawals from groundwater - non-renewable
0
Withdrawals from produced/entrained water
0
Withdrawals from third party sources
0
Total water discharges at this facility (megaliters/year)
1590.13
Comparison of total discharges with previous reporting year
Lower
Discharges to fresh surface water
1590.13
Discharges to brackish surface water/seawater
0
Discharges to groundwater
0
Discharges to third party destinations
0
Total water consumption at this facility (megaliters/year)
649.58
Comparison of total consumption with previous reporting year
About the same
Please explain
The coordinates of each facility represent one facility and are not an aggregate of multiple locations

Facility reference number
Facility 34
Facility name (optional)
Jaguaruna
Country/Area & River basin

<table>
<thead>
<tr>
<th>Brazil</th>
<th>Parana</th>
</tr>
</thead>
</table>

Latitude
-22.6833
Longitude
-46.9833
Located in area with water stress
Yes
Primary power generation source for your electricity generation at this facility
<Not Applicable>
Oil & gas sector business division
<Not Applicable>
Total water withdrawals at this facility (megaliters/year)
1098.05
Comparison of total withdrawals with previous reporting year
Lower
Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
1094.87
Withdrawals from brackish surface water/seawater
0
Withdrawals from groundwater - renewable
3.18
Withdrawals from groundwater - non-renewable
0
Withdrawals from produced/entrained water
0
Withdrawals from third party sources
0
Total water discharges at this facility (megaliters/year)
506.04
Comparison of total discharges with previous reporting year
Lower
Discharges to fresh surface water
506.041582823
Discharges to brackish surface water/seawater
0
Discharges to groundwater
0
Discharges to third party destinations
0
Total water consumption at this facility (megaliters/year)
592.01
Comparison of total consumption with previous reporting year
Lower
Please explain
The coordinates of each facility represent one facility and are not an aggregate of multiple locations

Facility reference number
Facility 35
Facility name (optional)
Jundiai
Country/Area & River basin
Brazil Parana

Latitude
-23.1833
Longitude
-46.8667
Located in area with water stress
Yes
Primary power generation source for your electricity generation at this facility
<Not Applicable>
Oil & gas sector business division
<Not Applicable>
Total water withdrawals at this facility (megaliters/year)
851.98
Comparison of total withdrawals with previous reporting year
About the same
Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0
Withdrawals from brackish surface water/seawater
0
Withdrawals from groundwater - renewable
0
Withdrawals from groundwater - non-renewable
0
Withdrawals from produced/entrained water
0
Withdrawals from third party sources
851.986
Total water discharges at this facility (megaliters/year)
235.11
Comparison of total discharges with previous reporting year
About the same
Discharges to fresh surface water
235.1170784
Discharges to brackish surface water/seawater
0
Discharges to groundwater
0
Discharges to third party destinations
0
Total water consumption at this facility (megaliters/year)
616.86

Comparison of total consumption with previous reporting year
About the same

Please explain
The coordinates of each facility represent one facility and are not an aggregate of multiple locations

Facility reference number
Facility 36

Facility name (optional)
Rio de Janeiro

Country/Area & River basin

Latitude
-22.9016

Longitude
-43.2107

Located in area with water stress
Yes

Primary power generation source for your electricity generation at this facility
<Not Applicable>

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
3437.93

Comparison of total withdrawals with previous reporting year
Higher

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
3437.935

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
0

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
0

Total water discharges at this facility (megaliters/year)
2211.07

Comparison of total discharges with previous reporting year
About the same

Discharges to fresh surface water
2211.07036694

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
1226.85

Comparison of total consumption with previous reporting year
Higher

Please explain
The coordinates of each facility represent one facility and are not an aggregate of multiple locations

Facility reference number
Facility 37
Facility name (optional)
Sete Lagoas

Country/Area & River basin

<table>
<thead>
<tr>
<th>Country/Area</th>
<th>River basin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brazil</td>
<td>Sao Francisco</td>
</tr>
</tbody>
</table>

Latitude
-19.9194

Longitude
-43.9383

Located in area with water stress
Yes

Primary power generation source for your electricity generation at this facility
<Not Applicable>

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
1025.97

Comparison of total withdrawals with previous reporting year
Lower

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
177.2134833125

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
848.7616966874

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
0

Total water discharges at this facility (megaliters/year)
104.33

Comparison of total discharges with previous reporting year
Lower

Discharges to fresh surface water
104.3343481428

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
921.64

Comparison of total consumption with previous reporting year
About the same

Please explain
The coordinates of each facility represent one facility and are not an aggregate of multiple locations
For the facilities referenced in W6.1, what proportion of water accounting data has been externally verified?

Water withdrawals – total volumes

| % verified | 76-100 |

What standard and methodology was used? ISAE3000, for beverage facilities.

Water withdrawals – volume by source

| % verified | Not verified |

What standard and methodology was used? <Not Applicable>

Water withdrawals – quality

| % verified | Not verified |

What standard and methodology was used? <Not Applicable>

Water discharges – total volumes

| % verified | Not verified |

What standard and methodology was used? <Not Applicable>

Water discharges – volume by destination

| % verified | Not verified |

What standard and methodology was used? <Not Applicable>

Water discharges – volume by treatment method

| % verified | Not verified |

What standard and methodology was used? <Not Applicable>

Water discharge quality – quality by standard effluent parameters

| % verified | Not verified |

What standard and methodology was used? <Not Applicable>

Water discharge quality – temperature

| % verified | Not verified |

What standard and methodology was used? <Not Applicable>

Water consumption – total volume

| % verified | Not verified |

What standard and methodology was used? <Not Applicable>

Water recycled/reused

| % verified | Not verified |

What standard and methodology was used? <Not Applicable>
Does your organization have a water policy?
Yes, we have a documented water policy that is publicly available.

(W6.1a) Select the options that best describe the scope and content of your water policy.

<table>
<thead>
<tr>
<th>Scope</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Company-wide</td>
<td>Description of business dependency on water</td>
</tr>
<tr>
<td></td>
<td>Description of business impact on water</td>
</tr>
<tr>
<td></td>
<td>Description of water-related performance standards for direct operations</td>
</tr>
<tr>
<td></td>
<td>Description of water-related standards for procurement</td>
</tr>
<tr>
<td></td>
<td>Reference to international standards and widely-recognized water initiatives</td>
</tr>
</tbody>
</table>

The value of water to our business is clear: from our farmers to our breweries to our consumers, our entire value chain and business depends on clean water. As we say—no water, no beer! In our direct operations, we aim for the highest level of water efficiency. We leverage our internal VPO environmental management system to monitor and manage our water use on a routine basis and cascade best practices and performance standards across the business. We are also committed to water-related innovation. For example, this year we completed a pilot program in Europe focused on using artificial intelligence to analyze water utilization in our beer manufacturing facilities, with the potential to pinpoint anomalies in our most problematic water lines, helping to reduce our water usage. Since 2017, we have been able to reduce our total water usage by 15.7%. About 90% of the water used to produce our products goes into our agricultural ingredients. Through our procurement function, we encourage our buyers to take actions to address water risk and improve water management in key growing regions. We are committed to the UN SDG 6 of water stewardship as described in our 2025 goal of that 100% of our communities in high stress areas will have measurably improved water availability and quality. More than just a key ingredient in our products, water is a critical resource for the health and well-being of every community, and climate change is already having water-related impacts on our business and communities. As the world's leading brewer, we are committed to being a part of the solution to the growing water challenges. Given the scale and complexity of water challenges, we know collective action is required to do this work. We continue to strengthen our global water partnerships with TNC and WWF to invest financial and technical resources in efforts such as reforestation projects, habitat restoration and improved water infrastructure. In 2020 we became a co-founding member of the Water Resilience Coalition, the widely-recognized water initiative of the UN CEO Water Mandate. We are committed to stakeholder awareness and education and utilize multiple strategies to increase both. We are engaging our consumers in our efforts to improve water security. Through its partnership with Water.org, to date Stella Artois has helped provide more than 3.2 million people in the developing world with access to clean, safe water.

(W6.2) Is there board level oversight of water-related issues within your organization?
Yes.

(W6.2a)

CDP
A Board-level committee, the Finance Committee of the Board of Directors, oversees the legal and regulatory affairs of the company and the environmental and social responsibilities of the company. The Committee oversees and approves the company’s Sustainability Goals and public commitments, including those related to water. The Finance Committee treats water as a standing item on its agenda and during meetings reviews the water risk map and response plans. An example of a water-related decision made by the Finance Committee in 2020 was to approve the strategy to explore the potential of a water positive impact for operations and to undertake detailed investigations into the irrigation component of the water footprint of barley in the supply chain, especially in high risk areas. The Finance Committee specifically focused on watershed risks, agricultural water use and future scenarios on water use ratios. The Board of Directors as a whole is responsible for the identification of stakeholders and the definition of material matters which include water-related issues.

W6.2b

(W6.2b) Provide further details on the board’s oversight of water-related issues.

<table>
<thead>
<tr>
<th>Frequency that water-related issues are a scheduled agenda item</th>
<th>Governance mechanisms into which water-related issues are integrated</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scheduled - some meetings</td>
<td>Monitoring implementation and performance of acquisitions and divestiture</td>
<td>The Chief Procurement and Sustainability Officer oversees the Global Sustainability team and reports twice a year to the Finance Committee of the Board of Directors to review topics relating to water risk and water-related supply chain security. The Finance Committee requests a detailed update on water risk across the group, and progress with mitigation plans. The committee also reviews investments into watershed security. Where relevant the risks and progress are reported to the Audit Committee of the board, through the Chief Procurement and Sustainability Officer. Given the representation of senior board members on these committees, the board is fully informed of water risk and trends. The Chief Procurement and Sustainability Officer also leads the company’s Sustainability Council, which is comprised of members of the Senior Leadership Team. The Sustainability Council meets monthly to oversee the achievement of our 2025 Sustainability Goals and to progress our broader sustainability strategy, including water-related goals and strategies. Bi-monthly updates are provided to the CEO, to whom the Chief Procurement and Sustainability Officer reports. Substantive progress against the company’s 2025 Sustainability Goals, which includes water-related issues, is provided at least twice a year to the full Board of Directors. The board also reviews major strategic and tactical plans that are tied to our sustainability goals, and linked water-related issues, and utilizes all applicable governance mechanisms when making decisions on these issues. Lastly, the board serves as an internal control to ensure publicly disclosed information related to all governance mechanisms are free from material misstatement, whether due to fraud or error.</td>
</tr>
</tbody>
</table>
(W6.3) Provide the highest management-level position(s) or committee(s) with responsibility for water-related issues (do not include the names of individuals).

Name of the position(s) and/or committee(s)
Chief Sustainability Officer (CSO)

Responsibility
Both assessing and managing water-related risks and opportunities

Frequency of reporting to the board on water-related issues
More frequently than quarterly

Please explain
The Chief Procurement and Sustainability Officer (CP&SO) oversees the Global Sustainability team and reports twice a year to the Finance Committee of the Board of Directors to review topics relating to water risk and water-related supply security. The Finance Committee requests a detailed update on water risk and progress on mitigation plans; it also reviews watershed security investments. Where relevant the risks and progress are reported to the Audit Committee of the board, through the CP&SO. Given the representation of senior board members on these committees, the board is fully informed of water risk and trends. The CP&SO also leads the company’s Sustainability Council, which is comprised of members of the Senior Leadership Team and meets monthly to oversee progress on our 2025 Sustainability Goals and strategy, including water-related items. Bimonthly updates are provided to the CEO, to whom the CP&SO reports. Progress is assessed through clear targets and KPIs.

Name of the position(s) and/or committee(s)
Chief Procurement Officer (CPO)

Responsibility
Both assessing and managing water-related risks and opportunities

Frequency of reporting to the board on water-related issues
More frequently than quarterly

Please explain
The Chief Procurement and Sustainability Officer (CP&SO) oversees the Global Sustainability team and reports twice a year to the Finance Committee of the Board of Directors to review topics relating to water risk and water-related supply security. The Finance Committee requests a detailed update on water risk and progress on mitigation plans; it also reviews watershed security investments. Where relevant the risks and progress are reported to the Audit Committee of the board, through the CP&SO. Given the representation of senior board members on these committees, the board is fully informed of water risk and trends. The CP&SO also leads the company’s Sustainability Council, which is comprised of members of the Senior Leadership Team and meets monthly to oversee progress on our 2025 Sustainability Goals and strategy, including water-related items. Bimonthly updates are provided to the CEO, to whom the CP&SO reports. Progress is assessed through clear targets and KPIs.

(W6.4) Do you provide incentives to C-suite employees or board members for the management of water-related issues?

<table>
<thead>
<tr>
<th>Role(s) entitled to incentive</th>
<th>Performance indicator</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monetary reward</td>
<td>Board/Executive board Director on board Corporate executive team Chief Executive Officer (CEO) Chief Purchasing Officer (CPO) Chief Sustainability Officer (CSO)</td>
<td>Reduction in consumption volumes</td>
</tr>
<tr>
<td>Non-monetary reward</td>
<td>No one is entitled to these incentives</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

(W6.5) Do you engage in activities that could either directly or indirectly influence public policy on water through any of the following?
Yes, direct engagement with policy makers
Yes, trade associations
Yes, other
W6.5a

(W6.5a) What processes do you have in place to ensure that all of your direct and indirect activities seeking to influence policy are consistent with your water policy/water commitments?

Our Sustainability Goals, which include our water commitments, are approved by our Global Audit Committee and implementation is overseen by our Global Compliance Committee. Our Legal & Compliance officers lead day-to-day management of oversight, with support from our Procurement and People teams, to ensure all activities are consistent with our public commitments. For example, contracts for partnerships are scrutinized for any expectation of NGO partners to engage with public authorities. In addition, the Board of Directors serves as an internal control to ensure publicly disclosed information is free from material misstatement, whether due to fraud or error. To combat inconsistencies, our compliance officers are available around the clock to advise on specific issues. Per our Global Whistleblower Policy, colleagues can ask questions or raise concerns in person, via a mobile app or website, or anonymously through a global compliance hotline. All reports made under our Global Whistleblower Policy will be taken seriously and will be promptly and thoroughly investigated by the Global or Zone Ethics & Compliances teams, or by other teams under their supervision, in accordance with established Investigation Guidelines. The specific action taken in any particular case depends on the nature and gravity of the conduct or circumstances reported and the results of the investigation.

W6.6

(W6.6) Did your organization include information about its response to water-related risks in its most recent mainstream financial report?

Yes (you may attach the report - this is optional)

W7. Business strategy

W7.1

(W7.1) Are water-related issues integrated into any aspects of your long-term strategic business plan, and if so how?

<table>
<thead>
<tr>
<th>Long-term business objectives</th>
<th>Long-term time horizon (years)</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes, water-related issues are integrated</td>
<td>> 30</td>
<td>As part of our global growth strategy, AB InBev is involved commercially and operationally in multiple regions and countries. Water availability is integrated into our long-term business objectives as it is essential in both growing and maintaining brewing operations. For example, the recent growth of our business in Africa necessitates clear integration of water-related risks in our operational and strategic planning such as expansion plans. In order to ensure sufficient production capacity into the future in high growth areas such as Mexico and Africa, facilities must be able to maintain and grow capacity and new facilities may be required to be opened. Greenfield facilities undergo systematic analysis of water availability before capex is approved. As part of the expansion and growth process over the long-term, this includes taking into account the specific issue of water availability in these areas. One of the key factors in these procedures is ensuring water availability in the future. AB InBev leverages its sustainability 100+ approach, which includes consideration of key risks and opportunities for the company to consider in order to remain successful in the next 100 years. This includes financial, environmental, and social value of water availability and water quality for our operations and agricultural supply chain.</td>
</tr>
<tr>
<td>Yes, water-related issues are integrated</td>
<td>> 30</td>
<td>As part of our global growth strategy, AB InBev is involved in markets in multiple countries. In order to ensure sufficient production capacity into the future, new facilities are required to be opened. To achieve this, we have created a strategy for achieving these long-term growth objectives: as part of this process, this includes taking into account the specific issue of water availability in these areas. One of the key factors in these procedures is ensuring water availability in the future. As of 2020, 100% of our sites located in high stress areas have conducted local outreach, analyzed the water challenges specific to their community and identified potential solutions—the first three steps of our seven-step watershed management process. AB InBev leverages its sustainability 100+ approach, which includes consideration of key risks and opportunities for the company to consider in order to remain successful in the next 100 years to continually integrate into our strategy. This includes financial, environmental, and social value of water availability and water quality for our operations and agricultural supply chain.</td>
</tr>
<tr>
<td>Yes, water-related issues are integrated</td>
<td>> 30</td>
<td>Financial planning is a key aspect of our global growth strategy, as AB InBev is involved in markets in multiple countries. In order to ensure sufficient production capacity into the future, capital for new facilities will be required to increase our production volumes. As part of this process, this includes taking into account the specific issue of water availability in these areas. One of the key factors in these procedures is ensuring water availability in the future. AB InBev leverages its sustainability 100+ approach, which includes consideration of key risks and opportunities for the company to consider in order to remain successful in the next 100 years. This includes financial, environmental, and social value. For example, we announced the successful signing of a new 10.1 billion USD Sustainable-Linked Loan Revolving Credit Facility (SLL RCF), replacing our existing 9.0 billion USD RCF. This facility has an initial five-year term and incorporates a pricing mechanism that incentivizes improvement in key performance areas that are aligned with and contribute to our 2025 Sustainability Goals.</td>
</tr>
</tbody>
</table>

W7.2
What is the trend in your organization’s water-related capital expenditure (CAPEX) and operating expenditure (OPEX) for the reporting year, and the anticipated trend for the next reporting year?

<table>
<thead>
<tr>
<th>Row 1</th>
<th>Water-related CAPEX (+/- % change)</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Anticipated forward trend for CAPEX (+/- % change)</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Water-related OPEX (+/- % change)</td>
<td>-1</td>
</tr>
<tr>
<td></td>
<td>Anticipated forward trend for OPEX (+/- % change)</td>
<td>1</td>
</tr>
</tbody>
</table>

Please explain

Water related expenditure, CAPEX, and OPEX was utilized for energy and fluids (water efficiency and effluent treatment) in the 2020 fiscal year. The change in CAPEX and OPEX is related to the necessary resources required to achieve our water related goals in 2020. CAPEX budgeting change was consistent with previous years, but some spend execution was delayed due to COVID-19. These investments have been rolled over into 2021. OPEX in 2020 was slightly lower for the same reason. Forward anticipated trends in CAPEX and OPEX spend are expected to be consistent with past trends.

Does your organization use climate-related scenario analysis to inform its business strategy?

<table>
<thead>
<tr>
<th>Use of climate-related scenario analysis</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Climate change impacts on business and the communities where we live and work. To better understand current and future scenarios, we are leveraging technology and partnerships to evaluate impact down to the local level and develop action plans accordingly. We leverage the framework developed by the Task Force on Climate-related Financial Disclosure (TCFD) to evaluate the potential impacts of climate change on our business. Following TCFD guidelines, we have analyzed two scenarios: a sustainable future in which global warming is limited to 1.5 degrees Celsius above pre-industrial levels and an extreme global warming scenario in which global warming reaches 4 degrees Celsius. Our goal of 25% reduction in CO2 emissions across our value chain was established utilizing climate-related scenario analysis to keep it in line with the level of decarbonization required to keep global temperature increase below 1.5 degrees Celsius compared to pre-industrial temperatures per SBTi.</td>
</tr>
</tbody>
</table>

Has your organization identified any water-related outcomes from your climate-related scenario analysis?

Yes

What water-related outcomes were identified from the use of climate-related scenario analysis, and what was your organization’s response?

<table>
<thead>
<tr>
<th>Climate-related scenarios and models applied</th>
<th>Description of possible water-related outcomes</th>
<th>Company response to possible water-related outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2DS</td>
<td>We have identified four possible water-related outcomes. First, disruption of our operations in our facilities due to water quality or quantity issues. Secondly, disruption of our supply changes due to changing rainfall patterns or droughts as a result of climate change. Thirdly, consumers are becoming increasingly aware of water issues amidst changing climates which affect our reputation. Finally, there is the risk of regulators raising the price of water or taking allocation decisions which could impact on water availability. These outcomes could have negative impacts on our operations, our reputation and the resilience of our supply chain.</td>
<td>Our evaluation of potential impacts of climate change on our business using the Taskforce on Climate-related Financial Disclosure (TCFD) indicated that key areas of potential impact is in our supply chain and in water. This evaluation has informed our agricultural sourcing strategy and our development of resilience and adaptation strategies such as new crop variety development, crop management, watershed management, and informed sourcing decisions. This evaluation also helps us prioritize watersheds where we are taking action to achieve measurable improvement in water quality and availability. We are undertaking further analysis for detailed quantification of the risks. Together with NGOs such as the World Wide Fund for Nature (WWF) and The Nature Conservancy (TNC), we continue to invest resources to ensure 100% of our communities in high stress areas will have measurably improved water availability and quality in line with our 2025 goals. In July 2020, we expanded our existing water partnership with The Nature Conservancy (TNC) to include agricultural initiatives that address soil health, biodiversity and water stewardship across our agriculture supply chain. Together, we developed a framework for designing impactful soil health programs, which launched on World Soil Day in December 2020.</td>
</tr>
</tbody>
</table>

CDP
Does your company use an internal price on water?

Yes

Please explain

In different locations we have invested in approaches to derive different values of water in different parts of the industrial cycle (for example, the degree to which it has been treated, stored, cooled, filtered, etc.) For each type of water, we have allocated a different price to inform capital investments in terms of saving the most valuable and expensive type of water. We have undertaken a detailed analysis of the price of water in all locations and determined that high risk locations do not necessarily have higher costs of water. The company decided to set more demanding efficiency targets in all sites located in water stressed areas with a specified target of 2.0 hl/hl, thus implying a higher internal price of water in these locations.

W8. Targets

W8.1

<table>
<thead>
<tr>
<th>Levels for targets and/or goals</th>
<th>Monitoring at corporate level</th>
<th>Approach to setting and monitoring targets and/or goals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Company-wide targets and goals</td>
<td>Targets are monitored at the corporate level</td>
<td>As a leader in the beverage industry, AB InBev utilizes water as the number one ingredient in its products. For example, in 2020 total water consumed was 1.496 billion hectoliters. Due to the large quantity of water consumed during operations, the company has set a 2025 target to achieve a global water efficiency ratio of 2.5 hectoliters of water used per hectoliter of production, and a ratio of 2.0 hl/hl at each site location in a high water stress area. AB InBev decreased water use by hectoliter of production by nearly 13% since 2017. Our approach to setting water-related targets and goals is through monitoring zone, market, and site level water use. Based upon the water risk level identified for the site, either our standard goal or a specific high-risk watershed target (based on the relevant local water risks and priority response areas through global water partnerships (i.e., TNC and WWF)) is allocated to the facility. Progress is measured and reported on a monthly basis against the AB InBev seven step watershed management framework. In addition, we published our public goal of measurably improving water availability and quality in high risk watersheds. We aim to brew our beers at the highest level of water efficiency and we continually challenge ourselves to do even more. We have set ambitious water efficiency targets across our business, with even more ambitious goals for our breweries located in communities facing high water stress. In 2020 we implemented innovative technology and process improvements to reduce our per hl water use to 2.70 hl/hl.</td>
</tr>
<tr>
<td>Business level specific targets and/or goals</td>
<td>Goals are monitored at the corporate level</td>
<td>-</td>
</tr>
<tr>
<td>Activity level specific targets and/or goals</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Site/facility specific targets and/or goals</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Brand/product specific targets and/or goals</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Country level targets and/or goals</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Basin specific targets and/or goals</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Provide details of your water targets that are monitored at the corporate level, and the progress made.

Target reference number
Target 1

Category of target
Product water intensity

Level
Company-wide

Primary motivation
Cost savings

Description of target
We have a company-wide target that is monitored at the corporate level to reduce global water intensity to a leading-edge 2.5 hectoliters of water per hectoliter of production which we categorize using a % reduction per unit of production metric. We have a more demanding target of 2.0 hl/hl for each site located in a high-water stress area by 2025.

Quantitative metric
% reduction per unit of production

Baseline year
2017

Start year
2017

Target year
2025

% of target achieved
66

Please explain
In 2019, AB InBev achieved our 2025 goal of 2.8 hl/hl and we set a new goal for ourselves of 2.5 hl/hl. In 2020 we achieved 2.7 hl/hl from a 2017 baseline of 3.09 hl/hl meaning we have met 66% of our goal.

Target reference number
Target 2

Category of target
Water pollution reduction

Level
Company-wide

Primary motivation
Reduced environmental impact

Description of target
We have an internal company-wide environmental target that is monitored at the corporate level to increase effluent treatment efficiency as measured by the removal of organic material via BTS, specifically COD. We track this by measuring COD in the effluent received by our effluent treatment plants (BTS) and the COD in the effluent being discharged post-BTS. Our target is to reach 95% efficiency by 2021.

Quantitative metric
% reduction in concentration of pollutants

Baseline year
2013

Start year
2013

Target year
2021

% of target achieved
98

Please explain
This target is measured by the removal of organic material via BTS, specifically COD, as this is a primary indicator of discharge quality. We track this by measuring COD in the effluent received by our effluent treatment plants (BTS) and the COD in the effluent being discharged post-BTS. COD can be measured every shift, enabling regular ongoing tracking. Our internal environmental target is to reach 95% efficiency by 2021, which exceeds the standard of our policy of achieving a minimum efficiency of at least 90% in order to ensure full compliance with local regulations on discharge quality parameters. All discharge is in compliance with local discharge permits. In 2020 we achieved 93.1% efficiency, meaning we had achieved 98% of the target efficiency level we are aiming for. We are confident we will achieve the target in 2021 through our investments in treatment technology.
Provide details of your water goal(s) that are monitored at the corporate level and the progress made.

Goal
Providing access to safely managed Water, Sanitation and Hygiene (WASH) in local communities

Level
Company-wide

Motivation
Water stewardship

Description of goal
100% of communities in high risk locations will have measurable improvement in water quality and availability by 2025. The goal is important as reaching the target will ensure that all our operations have better access and quality of water available, and local communities are water secure, resulting in positive neighbors and potential new consumers. The ultimate goal achievement is based on every site in a high-risk location providing evidence of measurable impact on water availability (such as liter of water per person) and quality (such as temperature or pH of water), depending on the water issue specific to the location. This goal is being implemented company-wide through an internal Seven Step AB InBev watershed management process that we developed to help our teams manage the journey from analysis, stakeholder engagement and implementation, until governance and measurable impact. Company-wide progress is measured either by the number of sites achieving this desirable end state or their progress against the Seven Step AB InBev watershed model.

Baseline year
2017

Start year
2017

End year
2025

Progress
To address the challenges specific to the different site-specific environments we operate in, we developed a comprehensive seven step water management process at sites located in water-stressed areas. The indicators utilized to assess progress are water availability (such as liter of water per person) and quality (such as temperature or pH of water), depending on the water issue specific to the location. The threshold for success of this project is 100% of communities in high risk locations will have measurable improvement in water quality and availability by 2025. As of 2020, 100% of our sites have conducted local outreach, determined water solutions specific to their community, and identified potential solutions. Since these solutions were identified, we have started to implement them at up to 78% of sites located in areas facing water stress. We have already started piloting the process of demonstrating measurable impact of these solutions on water availability and quality in two locations.

W9. Verification

W9.1

(W9.1) Do you verify any other water information reported in your CDP disclosure (not already covered by W5.1a)?

Yes

W9.1a

(W9.1a) Which data points within your CDP disclosure have been verified, and which standards were used?

<table>
<thead>
<tr>
<th>Disclosure module</th>
<th>Data verified</th>
<th>Verification standard</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>W1 Current state</td>
<td>Total Water Use Water intensity (i.e. water use per hectoliter of production)</td>
<td>ISAE 3000</td>
<td>Limited assurance in accordance with the International Standard on Assurance Engagements ISAE 3000 performed by KPMG Bedrijfsrevisoren CVBA</td>
</tr>
</tbody>
</table>

W10. Sign off

W-FI

(W-FI) Use this field to provide any additional information or context that you feel is relevant to your organization’s response. Please note that this field is optional and is not scored.

W10.1

(W10.1) Provide details for the person that has signed off (approved) your CDP water response.

<table>
<thead>
<tr>
<th>Job title</th>
<th>Corresponding job category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
<td>Chief Sustainability Officer – member of Senior Leadership Team (functioning as Executive Board of Management)</td>
</tr>
</tbody>
</table>
W10.2

(W10.2) Please indicate whether your organization agrees for CDP to transfer your publicly disclosed data on your impact and risk response strategies to the CEO Water Mandate’s Water Action Hub [applies only to W2.1a (response to impacts), W4.2 and W4.2a (response to risks)].
No

SW. Supply chain module

SW0.1

(SW0.1) What is your organization’s annual revenue for the reporting period?

<table>
<thead>
<tr>
<th>Annual revenue</th>
</tr>
</thead>
<tbody>
<tr>
<td>52300000000</td>
</tr>
</tbody>
</table>

SW0.2

(SW0.2) Do you have an ISIN for your organization that you are willing to share with CDP?
Yes

SW0.2a

(SW0.2a) Please share your ISIN in the table below.

<table>
<thead>
<tr>
<th>ISIN country code</th>
<th>ISIN numeric identifier (including single check digit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE</td>
<td>0974293251</td>
</tr>
</tbody>
</table>

SW1.1

(SW1.1) Could any of your facilities reported in W5.1 have an impact on a requesting CDP supply chain member?
This is confidential

SW1.2

(SW1.2) Are you able to provide geolocation data for your facilities?

<table>
<thead>
<tr>
<th>Are you able to provide geolocation data for your facilities?</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>No, this is confidential data</td>
<td></td>
</tr>
</tbody>
</table>

SW2.1

(SW2.1) Please propose any mutually beneficial water-related projects you could collaborate on with specific CDP supply chain members.

SW2.2

(SW2.2) Have any water projects been implemented due to CDP supply chain member engagement?
No

SW3.1

(SW3.1) Provide any available water intensity values for your organization’s products or services.
Submit your response

In which language are you submitting your response?
English

Please confirm how your response should be handled by CDP

<table>
<thead>
<tr>
<th>I am submitting to</th>
<th>Public or Non-Public Submission</th>
<th>Are you ready to submit the additional Supply Chain questions?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investors</td>
<td>Public</td>
<td>Yes, I will submit the Supply Chain questions now</td>
</tr>
<tr>
<td>Customers</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Please confirm below
I have read and accept the applicable Terms