W0. Introduction

W0.1

(W0.1) Give a general description of and introduction to your organization.

Anheuser-Busch InBev is a publicly traded company (Euronext: ABI) based in Leuven, Belgium, with secondary listings on the Mexico (MEXBOL: ANB) and South Africa (JSE: ANH) stock exchanges and with American Depositary Receipts on the New York Stock Exchange (NYSE: BUD). We are the world’s leading brewer and everything we do is driven by our dream of bringing people together for a better world. Beer, the original social network, has been bringing people together for thousands of years. We are a strong, diversified company with an unrivaled geographic footprint, portfolio of brands, talent pool and a clear commercial strategy committed to building great brands that stand the test of time and to brewing the best beers using the finest natural ingredients. Our diverse portfolio of well over 500 beer brands includes global brands Budweiser®, Corona® and Stella Artois®; multi-country brands Beck's®, Castle®, Castle Lite®, Hoegaarden® and Leffe®; and local champions such as Aguila®, Antarctica®, Bud Light®, Brahma®, Cassi®, Chernigivske®, Cristal®, Harbin®, Jupiler®, Klinskoye®, Michelob Ultra®, Modelo Especial®, Quilmes®, Victoria®, Sedrin®, Sibirskaya Korona® and Skol®. Our brewing heritage dates back more than 600 years, spanning continents and generations. From our European roots at the Den Hoorn brewery in Leuven, Belgium; to the pioneering spirit of the Anheuser & Co. brewery in St. Louis, US; to the creation of the Castle Brewery in South Africa during the Johannesburg gold rush; to Bohemia, the first brewery in Brazil. Geographically diversified with a balanced exposure to developed and developing markets, we leverage the collective strengths of approximately 200,000 employees based in more than 50 countries worldwide. For 2019, AB InBev’s reported revenue was 52.3 billion US dollars (excluding joint ventures and associates) growing volumes by 1.1%, our third consecutive year of volume growth with the rate of growth accelerating each year.

W-FB0.1a

(W-FB0.1a) Which activities in the food, beverage, and tobacco sector does your organization engage in?

Processing/Manufacturing

W0.2

(W0.2) State the start and end date of the year for which you are reporting data.

<table>
<thead>
<tr>
<th>Reporting year</th>
<th>Start date</th>
<th>End date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>January 1 2019</td>
<td>December 31 2019</td>
</tr>
</tbody>
</table>

W0.3
Select the countries/areas for which you will be supplying data.

Argentina
Australia
Barbados
Belgium
Bolivia (Plurinational State of)
Botswana
Brazil
Canada
China
Colombia
Dominican Republic
Ecuador
El Salvador
Eswatini
Germany
Ghana
Guatemala
Honduras
India
Lesotho
Luxembourg
Mexico
Mozambique
Namibia
Netherlands
Nigeria
Panama
Paraguay
Peru
Republic of Korea
Russian Federation
Saint Vincent and the Grenadines
South Africa
Spain
Uganda
Ukraine
United Kingdom of Great Britain and Northern Ireland
United Republic of Tanzania
United States of America
Zambia

Select the currency used for all financial information disclosed throughout your response.
USD

Select the option that best describes the reporting boundary for companies, entities, or groups for which water impacts on your business are being reported.
Companies, entities or groups over which operational control is exercised

Within this boundary, are there any geographies, facilities, water aspects, or other exclusions from your disclosure?
Yes

Please report the exclusions.

<table>
<thead>
<tr>
<th>Exclusion</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data included is that of AB InBev’s global beer and soft drink facilities.</td>
<td>We report data from our internal Voyager Plant Optimization (VPO) data management system. The process of becoming compliant with VPO certification ensures that we have the highest quality data available. Data may not be included in VPO if a facility is new, recently acquired or extremely small. Approximately 95% of our beverage plants throughout the world have been certified in accordance with these VPO requirements. Each plant must pass through our VPO qualification process to ensure our management system is implemented as intended. This process, which takes approximately six to nine months, is required before data is tracked in VPO. This reporting is focused on our brewing and soft drink operations. Most vertical operations use very low amounts of water and, therefore, are not reported here. The beverage plants that are reported represent about 95 percent of total company water withdrawals.</td>
</tr>
<tr>
<td>Data excluded includes: sales and distribution operations, some packaging facilities, and some smaller brewing and soft-drink facilities (non-material).</td>
<td></td>
</tr>
</tbody>
</table>
W1.1 Rate the importance (current and future) of water quality and water quantity to the success of your business.

<table>
<thead>
<tr>
<th>Current state</th>
<th>Direct use importance rating</th>
<th>Indirect use importance rating</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sufficient amounts of good quality freshwater available for use</td>
<td>Vital</td>
<td>Vital</td>
<td>Applicable to both current and future importance. Sufficient, high-quality water is essential for producing our beers and other products and required to support our commitment to product quality and to underpin our growth strategy. In direct use we have identified water in our direct operations due to without sufficient quantities of freshwater, we cannot produce our products. In 2019, we used 180.9 billion liters of water to produce our products worldwide. In indirect use, high-quality water is critical to converting raw materials/agricultural inputs into our products. Over 90% of the water accounted for in a beer is accounted for in agricultural inputs used in the brewing process, such as irrigation of barley. Although water used in agriculture is not within our direct control, we work with farmers to reduce water use in the irrigation cycle, improve soil moisture management as well as improving watershed security in priority sourcing regions in high water risk. Given the increasing demand for good, quality freshwater around the globe we see our future freshwater dependency remaining vital to both our indirect and direct operations. That is why we have made global commitments focused on water stewardship to help contribute to a healthy natural environment and thriving communities, so we can continue to brew beers that bring people together for the next 100+ years.</td>
</tr>
<tr>
<td>Sufficient amounts of recycled, brackish and/or produced water available for use</td>
<td>Important</td>
<td>Important</td>
<td>Applicable to both current and future importance. Directly, we implemented best practices for recycling water within many production processes, including for cooling, heating and cleaning, resulting in saving nearly 9% of water. We recycle treated wastewater at many of our breweries using an anaerobic treatment process. This process generates biogas that can be combusted and used for production processes. Indirectly, repurposing effluent before it is returned to watersheds fits within our global water strategy, especially in the water-stressed areas identified within our global footprint across Argentina, Bolivia, Brazil, China, Colombia, Mexico, Peru, South Africa, the US, India, Dominican Republic, and Zambia. We evaluate each project to ensure it meets resource needs, regulatory requirements, and provides community benefits. Specifically, in 2019 we continued to partner with local communities in Cochabamba, Bolivia, to provide treated effluent from the brewery to local farmers for irrigation purposes- essential for growing crops and flowers as cash crops. We specifically invested in providing better irrigation infrastructure to local farmers to ensure reduced water use and enhanced crop production. We see our future water dependency on recycled water remaining important to our direct and indirect operations as it fits within our global water strategy and 2025 Sustainability Goals. In our direct operations, future dependency on water will increase as climate change impacts on water availability and in our indirect operations we expect farmers to face more climate variability and changed rainfall, impacting on predictability of rain for crops. In both cases waste water reuse can help mitigate the impact.</td>
</tr>
</tbody>
</table>

W-FB1.1a Which water-intensive agricultural commodities that your organization produces and/or sources are the most significant to your business by revenue? Select up to five.

<table>
<thead>
<tr>
<th>Agricultural commodities</th>
<th>% of revenue dependent on these agricultural commodities</th>
<th>Produced and/or sourced</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maize</td>
<td>21-40</td>
<td>Sourced</td>
<td>Based on FY2019 sales, the percent revenue dependent on maize is approximately 22%.</td>
</tr>
<tr>
<td>Rice</td>
<td>Less than 10%</td>
<td>Sourced</td>
<td>Based on FY2019 sales, the percent revenue dependent on rice is approximately 9%.</td>
</tr>
<tr>
<td>Other, please specify (Barley)</td>
<td>61-80</td>
<td>Sourced</td>
<td>Based on FY2019 sales, the percent revenue dependent on barley and malted barley is approximately 67%.</td>
</tr>
</tbody>
</table>
Water withdrawals – total volumes

<table>
<thead>
<tr>
<th>% of sites/facilities/operations</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>100%</td>
<td>The reported percentage reflects our beverage operations. The beverage plants represent nearly 95% of total company water withdrawals. Water is a key ingredient in all of our products, and we track this key performance indicator in our Voyager Plant Optimization (VPO) data management system. Approximately 95% of our beverage plants throughout the world have been certified in accordance with our VPO requirements. Water withdrawals is reported per water source e.g. ground water or municipal source.</td>
</tr>
</tbody>
</table>

Water withdrawals – volumes by source

<table>
<thead>
<tr>
<th>% of sites/facilities/operations</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>100%</td>
<td>The reported percentage reflects our beverage operations, with 42.6% from municipal sources, 40.9% from ground water and 16.9% from surface water sources and a small balance from other sources. The beverage plants represent nearly 95% of total company water withdrawals. Water is a key ingredient in all of our products and we track this key performance indicator in our Voyager Plant Optimization (VPO) data management system. Approximately 95% of our beverage plants throughout the world have been certified in accordance with our VPO requirements. All water use is metered and monitored on an ongoing basis, with monthly group wide reporting. Total water withdrawal metering is performed for all sites and often measured and reported based on key production stages such as brewing and packaging and is monitored on an 8 hour per shift basis in order to benchmark and compare on an ongoing basis and implement corrective measures if required. Water withdrawals is reported per water source.</td>
</tr>
</tbody>
</table>

Produced water associated with your metals & mining sector activities – total volumes (only metals and mining sector)

<table>
<thead>
<tr>
<th>% of sites/facilities/operations</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td><Not Applicable></td>
<td><Not Applicable></td>
</tr>
</tbody>
</table>

Water withdrawals quality

<table>
<thead>
<tr>
<th>% of sites/facilities/operations</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>100%</td>
<td>The reported percentage reflects our beverage operations. The beverage plants represent nearly 95% of total company water withdrawals. Water quality is a key component in all of our products, and we track this key performance indicator in our Voyager Plant Optimization (VPO) data management system, with most water quality measures taking place on a daily basis. Some measures such as pH is controlled for every brew. The AB InBev Supplier Product Integrity Policy is mandatory, non-negotiable, and ensures that all raw materials such as water used in beverage production and the final product are regularly monitored to ensure compliance with all regulatory and AB InBev food safety limits; ultimately detected for any potential food safety issues. Changes to the specifications listed in the Analytical Program are communicated by the person responsible to Supplier Quality Assurance, to ensure that the suppliers are informed of the latest specifications.</td>
</tr>
</tbody>
</table>

Water discharges – total volumes

<table>
<thead>
<tr>
<th>% of sites/facilities/operations</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>100%</td>
<td>The reported percentage reflects discharges from our beverage operations. Each site has a process in place to detect, control, communicate, and register the discharges on a department level, including an accurate process discharge map, designated sampling points, frequencies of sampling, etc. Most water measurements take place on a daily basis. The beverage plants represent nearly 95% of total company water withdrawals. Water discharges is an important component of sustainable brewing and we track this key performance indicator in our Voyager Plant Optimization (VPO) data management system. Approximately 95% of our beverage plants throughout the world have been certified in accordance with our VPO requirements. Data may not be included in VPO because a facility is new, recently acquired or extremely small.</td>
</tr>
</tbody>
</table>

Water discharges – volumes by destination

<table>
<thead>
<tr>
<th>% of sites/facilities/operations</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>100%</td>
<td>The reported percentage reflects effluent discharges for our beverage operations. The beverage plants represent nearly 95% of total company water withdrawals. The beverage plants represent nearly 95% of total water withdrawals measured on a daily basis. Water is a key ingredient in all of our products and we track this key performance indicator in our Voyager Plant Optimization (VPO) data management system. Approximately 95% of our beverage plants throughout the world have been certified in accordance with our VPO requirements. All water use is metered and monitored on an ongoing basis, with monthly group wide reporting. Total water withdrawal metering is performed for all sites and often measured and reported based on key production stages such as brewing and packaging and is monitored on an 8 hour per shift basis in order to benchmark and compare on an ongoing basis and implement corrective measures if required. Water discharges is reported per water source e.g. ground water or municipal source.</td>
</tr>
</tbody>
</table>

Water discharges – volumes by treatment method

<table>
<thead>
<tr>
<th>% of sites/facilities/operations</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>100%</td>
<td>The reported percentage reflects discharges from our beverage operations. Today AB InBev has more than 97% of the effluent treated via BTS (Biological treatment System). The 3% remaining is treated via municipality. The effluent treatment is mostly Primary treatment to segregate solids, before going to classic secondary treatment with Anaerobic reactions (treating 80% of the organic load) and the 20% remaining is treated by aerobic system. In some operations we have also tertiary treatment such as reverse osmosis. The beverage plants represent nearly 95% of total company water withdrawals, measured on a daily basis. Water is a key ingredient in all of our products, and we track this key performance indicator in our Voyager Plant Optimization (VPO) data management system. Approximately 95% of our beverage plants throughout the world have been certified in accordance with our VPO requirements. Data may not be included in VPO because a facility is new, recently acquired or extremely small.</td>
</tr>
</tbody>
</table>

Water discharge quality – by standard effluent parameters

<table>
<thead>
<tr>
<th>% of sites/facilities/operations</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>100%</td>
<td>The reported percentage reflects effluent discharges for our beverage operations. The beverage plants represent nearly 95% of total company water withdrawals. Water quality is a key component in all of our products, and we track this key performance indicator in our Voyager Plant Optimization (VPO) data management system, with most water quality measures taking place on a daily basis. Some measures such as pH is controlled for every brew. Approximately 95% of our beverage plants throughout the world have been certified in accordance with our VPO requirements. Data may not be included in VPO because a facility is new, recently acquired or extremely small. Total water withdrawal metering is performed for all sites and often measured and reported based on key production stages such as brewing and packaging and is monitored per shift basis in order to benchmark and compare on an ongoing basis and implement corrective measures if required. Water discharges is reported per water source e.g. ground water or municipal source.</td>
</tr>
</tbody>
</table>

Water discharge quality – temperature

<table>
<thead>
<tr>
<th>% of sites/facilities/operations</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>100%</td>
<td>The reported percentage reflects discharges from our beverage operations. Today AB InBev has more than 97% of the effluent treated via BTS (Biological treatment System). The 3% remaining is treated via municipality. The effluent treatment is mostly Primary treatment to segregate solids, before going to classic secondary treatment with Anaerobic reactions (treating 80% of the organic load) and the 20% remaining is treated by aerobic system. In some operations we have also tertiary treatment such as reverse osmosis. The beverage plants represent nearly 95% of total company water withdrawals, measured on a daily basis. Water is a key ingredient in all of our products, and we track this key performance indicator in our Voyager Plant Optimization (VPO) data management system. Approximately 95% of our beverage plants throughout the world have been certified in accordance with our VPO requirements. Data may not be included in VPO because a facility is new, recently acquired or extremely small. Total water withdrawal metering is performed for all sites and often measured and reported based on key production stages such as brewing and packaging and is monitored per shift basis in order to benchmark and compare on an ongoing basis and implement corrective measures if required. Water discharges is reported per water source e.g. ground water or municipal source.</td>
</tr>
</tbody>
</table>

Water consumption – total volume

<table>
<thead>
<tr>
<th>% of sites/facilities/operations</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>100%</td>
<td>The reported percentage reflects our beverage operations. The beverage plants represent nearly 95% of total company water withdrawals. Water is a key ingredient in all of our products, and we track this key performance indicator in our Voyager Plant Optimization (VPO) data management system. Approximately 95% of our beverage plants throughout the world have been certified in accordance with our VPO requirements. Data may not be included in VPO because a facility is new, recently acquired or extremely small. Total water withdrawal metering is performed for all sites and often measured and reported based on key production stages such as brewing and packaging and is monitored on an 8 hour per shift basis in order to benchmark and compare on an ongoing basis and implement corrective measures if required. Water discharges is reported per water source e.g. ground water or municipal source.</td>
</tr>
</tbody>
</table>

Water recycled/used

<table>
<thead>
<tr>
<th>% of sites/facilities/operations</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>100%</td>
<td>The reported percentage reflects our beverage operations. The beverage plants represent nearly 95% of total company water withdrawals. Water is a key ingredient in all of our products, and we track this key performance indicator in our Voyager Plant Optimization (VPO) data management system, measured on a daily basis. Approximately 95% of our beverage plants throughout the world have been certified in accordance with our VPO requirements. Data may not be included in VPO because a facility is new, recently acquired or extremely small. Recycled water is tested on an ongoing basis on all water discharged to meet local compliance. Temperature water quality testing is performed for discharged water on a daily, weekly and quarterly basis depending on previous test results. These quality tests are performed on an ongoing basis. More sophisticated tests are taken independently. Water samples are sent to laboratories for more stringent testing.</td>
</tr>
</tbody>
</table>

The provision of fully-functioning, safely managed WASH services to all workers

<table>
<thead>
<tr>
<th>% of sites/facilities/operations</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>100%</td>
<td>The reported percentage reflects our beverage operations. WASH services for employees is a basic food hygiene practice and mandated in our Voyager Plant Optimization (VPO) data management system, reported on a daily basis. Approximately 95% of our beverage plants throughout the world have been certified in accordance with our VPO requirements. Data may not be included in VPO because a facility is new, recently acquired or extremely small.</td>
</tr>
</tbody>
</table>
(W1.2d) What are the total volumes of water withdrawn, discharged, and consumed across all your operations, and how do these volumes compare to the previous reporting year?

<table>
<thead>
<tr>
<th>Volume (megalliters/year)</th>
<th>Comparison with previous reporting year</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total withdrawals 164219.55</td>
<td>About the same</td>
<td>Compared with the previous reporting year, water withdrawal volume increased by approximately less than 1%. In 2019, we improved our facility reporting capabilities around water. These reporting improvements led to a minor increase in the reported water withdrawals and discharges across the company. We anticipate that future volumes will decrease as efficiency increases in line with our 2025 Sustainability Goals. The reported figures balance (W) 164,219.55 - (D) 105,554.54 = (C) 58,665.01.</td>
</tr>
<tr>
<td>Total discharges 105554.54</td>
<td>Higher</td>
<td>Compared with the previous reporting year, water discharge volume increased by approximately 6%. In 2019, we improved our facility reporting capabilities around water. These reporting improvements led to an increase in the reported water withdrawals and discharges across the company. We anticipate that future volumes will decrease as efficiency increases in line with our 2025 Sustainability Goals.</td>
</tr>
<tr>
<td>Total consumption 58665.01</td>
<td>Lower</td>
<td>Compared with the previous reporting year, water consumption volume decreased approximately 6%. This is due to our improved facility water reporting capabilities and efficiencies in production. Future water use on an ongoing basis will likely decrease due to efficiency and increased reuse of effluent. However, this may vary if acquisitions are considered in future.</td>
</tr>
</tbody>
</table>

W.12d

(W1.2d) Indicate whether water is withdrawn from areas with water stress and provide the proportion.

<table>
<thead>
<tr>
<th>Withdrawals are from areas with water stress</th>
<th>% withdrawn from areas with water stress</th>
<th>Comparison with previous reporting year</th>
<th>Identification tool</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
<td>Yes</td>
<td>11-25</td>
<td>About the same</td>
<td>WRI Aqueduct</td>
</tr>
</tbody>
</table>

W-FB1.2e

(W-FB1.2e) For each commodity reported in question W-FB1.1a, do you know the proportion that is produced/sourced from areas with water stress?

<table>
<thead>
<tr>
<th>Agricultural commodities</th>
<th>The proportion of this commodity produced in areas with water stress is known</th>
<th>The proportion of this commodity sourced from areas with water stress is known</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maize</td>
<td>Not applicable</td>
<td>Yes</td>
<td>ABI utilizes a two-step process to identify the proportion of agricultural commodities sourced from water stressed areas. Initially the WRI Aqueduct and WWF Water Risk filter tool is used for the basin, and then when an area has been identified as high risk, our own custom-designed water assessment tool is employed. ABI considers the basin water risk (both quantity and quality) as well as factors such as relative size of the volume of the commodity purchased and local relevance such as degree of stakeholder interest or impact from purchasing decision and the potential impact for ABI from changing cost or quality considerations to aid in our internal facility risk assessment process. For maize in areas such as Africa, concern about the impact on water quality has been determined and being investigated to understand it better. The current version of the risk tool is focused on both water availability and quality dimensions in the Vaal and Orange basins providing irrigation water in South Africa.</td>
</tr>
<tr>
<td>Rice</td>
<td>Not applicable</td>
<td>Yes</td>
<td>ABI utilizes a two-step process to identify the proportion of agricultural commodities sourced from water stressed areas. Initially the WRI Aqueduct tool and WWF risk filter are used for the basin, and then when an area has been identified as high risk, our own custom-designed water assessment tool is employed. ABI considers the basin water risk (both quantity and quality) as well as factors such as relative size of the volume of the commodity purchased and local relevance such as degree of stakeholder interest or impact from purchasing decision and the potential impact for ABI from changing cost or quality considerations to aid in our internal facility risk assessment process. For rice in areas such as the USA, concern about the impact on water quality has been determined and being investigated to understand it better in the Arkansas area (Jonesboro). The current version of the risk tool is focused on water availability and quality concerns.</td>
</tr>
<tr>
<td>Other commodities from W- FBL1a, please specify (Barley)</td>
<td>Not applicable</td>
<td>Yes</td>
<td>ABI utilizes a two-step process to identify the proportion of agricultural commodities sourced from water stressed areas. Initially the WWF risk filter and WRI Aqueduct tool are used for the basin, and then when an area has been identified as high risk, our own custom-designed water assessment tool is employed. ABI considers the basin water risk (both quantity and quality) as well as factors such as relative size of the volume of the commodity purchased and local relevance such as degree of stakeholder interest or impact from purchasing decision and the potential impact for ABI from changing cost or quality considerations to aid in our internal facility risk assessment process. We used this process to identify risks of reduced water availability and increased sediment in the Idaho Falls area and initiated process to verify these risks.</td>
</tr>
</tbody>
</table>

W-FB1.2g
(W-FB1.2g) What proportion of the sourced agricultural commodities reported in W-FB1.1a originate from areas with water stress?

<table>
<thead>
<tr>
<th>Agricultural commodities</th>
<th>% of total agricultural commodity sourced from areas with water stress</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maize</td>
<td>0%</td>
<td>We used WRI Aqueduct and WWF Water Risk filter to map water risk for all direct sourcing areas for each commodity, then validated the water availability risk with local agronomists. We included the percent of volume we source of that commodity in high risk areas divided by the total of that commodity sourced. This metric is used within ABI to help inform our maize sourcing strategy as we do not source this commodity directly from farmers (apart from small scale projects in Africa). The proportion has not changed in last year and we do not anticipate any changes in future trends.</td>
</tr>
<tr>
<td>Rice</td>
<td>0%</td>
<td>We used WRI Aqueduct and WWF Water Risk filter to map water risk for all direct sourcing areas for each commodity, then validated the water availability risk with local agronomists. We calculated the percent of volume we source of that commodity in high risk areas divided by the total of that commodity sourced. This metric is used within ABI to help inform our sourcing strategy for rice. We are piloting deeper understanding of water risk in rice growing region in Jonesboro, USA. The proportion has not changed in last year and we do not anticipate any changes in future trends.</td>
</tr>
<tr>
<td>Other sourced commodities from W-FB1.2e, please specify (Barley)</td>
<td>26-50</td>
<td>We used WRI Aqueduct and WWF Water Risk filter to map water risk for all direct sourcing areas for each commodity, then validated the water availability risk with local agronomists. We calculated the percent of volume we source of that commodity in high risk areas divided by the total of that commodity sourced. This metric is used within ABI to help inform our sourcing strategy and engaging local farmers in South Africa, barley farmers in Idaho, USA. The proportion has not changed in last year and we do not anticipate any changes in future trends.</td>
</tr>
</tbody>
</table>

W1.2h

(W1.2h) Provide total water withdrawal data by source.

<table>
<thead>
<tr>
<th>Source of water</th>
<th>Relevance</th>
<th>Volume (megaliters/year)</th>
<th>Comparison with previous reporting year</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh surface water, including rainwater, water from wetlands, rivers, and lakes</td>
<td>Relevant</td>
<td>27667.42</td>
<td>Higher</td>
<td>ABI brewing facilities rely on withdrawals from surface water, ground water, and third-party sources in order to produce its products. In FY2019, surface water sources accounted for approximately 16.9% of ABI’s water withdrawals. Compared with FY2018, the volume withdrawn from surface water increased by approximately 23.2%. This was due to including water use for non-brewing operations for the first time such as maltings operations and improved facility reporting for water withdrawals. We anticipate that future volumes will decrease as efficiency increases in line with our 2025 Sustainability Goals.</td>
</tr>
<tr>
<td>Brackish surface water/Seawater</td>
<td>Not relevant</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td>None of ABI’s operations withdraw water from brackish estuaries or the ocean; therefore, this source is not relevant. We do not anticipate withdrawing water from this source in the future.</td>
</tr>
<tr>
<td>Groundwater – renewable</td>
<td>Relevant</td>
<td>66574.61</td>
<td>Lower</td>
<td>ABI relies on withdrawals from surface water, ground water, and third-party sources in order to produce its products. In FY2019, groundwater from renewable sources accounted for approximately 40.5% of ABI’s water withdrawals. Compared with FY2018, the volume withdrawn from ground water decreased by approximately 2.9%. This was due to an improved calculation, which better defined the groundwater usage.</td>
</tr>
<tr>
<td>Groundwater – non-renewable</td>
<td>Not relevant</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td>All groundwater withdrawn for ABI’s operations come from renewable sources that can be replenished within 50 years; therefore, this source is not relevant. We do not anticipate withdrawing water from this source in the future.</td>
</tr>
<tr>
<td>Produced/Entrained water</td>
<td>Not relevant</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td>ABI’s operations do not withdraw from produced water sources; therefore, this source is not relevant. We do not anticipate withdrawing water from this source in the future.</td>
</tr>
<tr>
<td>Third party sources</td>
<td>Relevant</td>
<td>69957.53</td>
<td>About the same</td>
<td>ABI relies on withdrawals from surface water, ground water, and third-party sources in order to produce its products. In FY2019, municipal water sources accounted for approximately 42.6% of ABI’s water withdrawals. Compared with FY2018, the volume withdrawn from third party sources decreased by approximately 0.3%. This stayed about the same due to year over year consistency in production activities drawing on third party sources. ABI defined third party sources as municipal water usage and tanker usage for the purpose of reporting to CDP, which accounts for the increase between reporting years.</td>
</tr>
</tbody>
</table>

W1.2i

(W1.2i) Provide total water discharge data by destination.

<table>
<thead>
<tr>
<th>Destination</th>
<th>Relevance</th>
<th>Volume (megaliters/year)</th>
<th>Comparison with previous reporting year</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh surface water</td>
<td>Relevant</td>
<td>5277.73</td>
<td>Much lower</td>
<td>Fresh surface water as a discharge destination is relevant as ABI operations in markets such as Brazil discharge treated effluent to surface water bodies, always within quality regulations as prescribed by local authorities. It is estimated to equal about 5% of total discharge volume. While discharge volume increased overall, it decreased for fresh surface water in 2019 compared to the previous year due to more accurate facility reporting. A detailed analysis of discharge data by region and destination was undertaken and reconciled with effluent reuse data. As we achieve our water goals we anticipate our future discharge trends for this destination will decrease.</td>
</tr>
<tr>
<td>Brackish surface water/seawater</td>
<td>Not relevant</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td>ABI does not discharge water to brackish surface water or seawater and as such this destination is not relevant. We do not anticipate our use of this destination to change in the future.</td>
</tr>
<tr>
<td>Groundwater</td>
<td>Not relevant</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td>ABI brewing facilities rely on withdrawals from surface water, ground water, and third-party sources in order to produce its products. In FY2019, groundwater from renewable sources accounted for approximately 40.5% of ABI’s water withdrawals. Compared with FY2018, the volume withdrawn from ground water decreased by approximately 2.9%. This was due to an improved calculation, which better defined the groundwater usage.</td>
</tr>
<tr>
<td>Third-party destinations</td>
<td>Relevant</td>
<td>100276.81</td>
<td>Much higher</td>
<td>Third-party destinations as a discharge destination is relevant as the majority of the water discharged across ABI’s business operations is routed to third-party destinations, meaning effluent is delivered to a registered third-party treatment facility such as a local authority, rather than directly into a water course. A detailed analysis of discharge data by region and destination was undertaken and reconciled with effluent reuse data. It is estimated to equal about 95% of total discharge volume. Discharge volume increased overall and for third-party sources in 2019 compared to the previous year due to more accurate facility reporting. As we achieve our water goals we anticipate our future discharge trends for this destination will decrease.</td>
</tr>
</tbody>
</table>
Do you collect/calculate water intensity for each commodity reported in question W-FB1.1a?

<table>
<thead>
<tr>
<th>Agricultural commodities</th>
<th>Water intensity information for this produced commodity is collected/calculated</th>
<th>Water intensity information for this sourced commodity is collected/calculated</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maize</td>
<td>Not applicable</td>
<td>Yes</td>
<td>ABI has undertaken a detailed water footprint analysis of all major crops based on the values provided by the Water Footprinting Network for each sourcing region. Where available, we use country level water footprint indicators for each crop, together with sourcing volume this provides best estimate of crop water intensity. Also take into consideration the balance between irrigation and rainfed areas.</td>
</tr>
<tr>
<td>Rice</td>
<td>Not applicable</td>
<td>Yes</td>
<td>ABI has undertaken a detailed water footprint analysis of all major crops based on the values provided by the Water Footprinting Network for each sourcing region. Where available, we use country level water footprint indicators for each crop, together with sourcing volume this provides best estimate of crop water intensity. Also take into consideration the balance between irrigation and rainfed areas.</td>
</tr>
<tr>
<td>Other commodities from W-FB1.1a, please specify (Barley)</td>
<td>Not applicable</td>
<td>Yes</td>
<td>ABI has undertaken a water footprint analysis of all major crops based on the values provided by the Water Footprinting Network for each sourcing region. Where available, we use country level water footprint indicators for each crop, together with sourcing volume this provides best estimate of crop water intensity. Also take into consideration the balance between irrigation and rainfed areas.</td>
</tr>
</tbody>
</table>
(W-FB1.3b) Provide water intensity information for each of the agricultural commodities identified in W-FB1.3 that you source.

<table>
<thead>
<tr>
<th>Agricultural commodities</th>
<th>Water intensity value (m3)</th>
<th>Numerator: Water aspect</th>
<th>Denominator</th>
<th>Comparison with previous reporting year</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maize</td>
<td>115</td>
<td>Total water consumption</td>
<td>Liters</td>
<td>About the same</td>
<td>ABI has undertaken a water footprint analysis of all major crops based on the values provided by the Water Footprint Network. Internally, our strategy to reduce this water intensity is to use the metrics to understand and manage water-related risks. We are actively working with farmers to improve irrigation efficiency in order to reduce overall water footprint, in places such as the Northern Cape in South Africa. This includes research and agronomic advice on better water application technology and processes, such as using variable rate applicators. The water intensity of crops does not vary significantly over time, so the water intensity is about the same as previous years, as we do not envisage any major shift in sourcing volumes of maize from different regions than currently. This may change if sourcing requirements change. The value of the analysis is in gaining visibility and strategic insight into our value chain rather than from detailed and frequent footprint data.</td>
</tr>
<tr>
<td>Rice</td>
<td>170</td>
<td>Total water consumption</td>
<td>Liters</td>
<td>About the same</td>
<td>ABI has undertaken a water footprint analysis of all major crops based on the values provided by the Water Footprint Network. Internally, our strategy to reduce this water intensity is to use the metrics to understand and manage water-related risks and also shaping our work with farmers to improve water efficiency to reduce the water footprint of rice. Farmers benefit from sustainable agriculture support; the company offers tools to help them reduce the environmental impacts of growing rice while saving on water. In terms of future trends, the water intensity of crops does not vary significantly over time, so the intensity is about the same as previous years, as our rice sourcing is largely based in the same regions as before and major changes in sourcing regions are not foreseen in the immediate future. We are engaging farmers directly to improve water use/ton of product as well as reducing use of fertilizers and chemicals which could leak into ground water sources.</td>
</tr>
<tr>
<td>Other sourced commodities</td>
<td>110</td>
<td>Total water consumption</td>
<td>Liters</td>
<td>About the same</td>
<td>AB InBev work with barley farmers includes low-elevation sprinkler application on pivot systems, drip irrigation, precision/variable rate systems. Based on our water risk models and agronomic work, in terms of future trends, the water intensity of crops does not vary significantly over time, so the intensity is about the same as previous years, as changes in sourcing barley from different regions tend to balance each other out in terms of water intensity. Internally, our strategy to reduce this water intensity is to use the metrics to understand and manage water-related risks such as drought and opportunities such as cost saving. Careful analysis shows major value for a company such as ABI in fully understanding that more than 90% of water is used in the sourcing component of the value chain, and barley is by far the dominant crop, but there is diminishing return in trying to do the same complex calculation annually when the overall conclusion remains the same.</td>
</tr>
</tbody>
</table>

W1.4

(W1.4) Do you engage with your value chain on water-related issues?

Yes, our suppliers
Yes, our customers or other value chain partners
(W1.4a) What proportion of suppliers do you request to report on their water use, risks and/or management information and what proportion of your procurement spend does this represent?

Row 1

<table>
<thead>
<tr>
<th>% of suppliers by number</th>
<th>26-50</th>
</tr>
</thead>
<tbody>
<tr>
<td>% of total procurement spend</td>
<td>76-100</td>
</tr>
</tbody>
</table>

Rationale for this coverage

Agricultural suppliers were selected because over 90% of the water used to produce our products is used in agriculture. We developed a platform for our growers to anonymously compare their barley production practices and outcomes across our network. The program, SmartBarley, enables growers to use data and share best practices to benefit their farms and communities, while strengthening the supply chain. SmartBarley is a portfolio of field level programs focusing on trial and transferring new crop technologies and improved practices. This provides incentive to growers to close gaps and reach new benchmarks in productivity and natural resource use efficiency. Suppliers are incentivized to report because they can access information to help them improve their own agricultural programs. We work with growers on benchmarking that leads to tangible results and emphasizing collective action to shift farming practices towards increased resource efficiency, such as water use at field-level.

Impact of the engagement and measures of success

(i) Information in the system includes technical, project, and other data that is used to identify opportunities to improve resource management, reduce water risks, increase efficiency and water productivity, and measure the success of soil and irrigation management pilot initiatives. (ii) The information gathered from suppliers through this program is used internally to help us achieve our water stewardship goals by helping growers improve water use efficiency. The data is used to benchmark resource efficiency such as water use against farmers with similar agricultural practices and soil types and then identifying potential options for improvement. Internally this information is used to provide feedback to farmers and inform the agronomic advice we provide farmers. We are actively tracking progress, and our metrics for success include the number of farmers using the tool as well as the resource efficiency such as better utilization of water and fertilizer.

Comment

We are working to engage our largest suppliers to set their own sustainability goals so we can scale and accelerate impact. To help achieve this, in 2018 we launched Eclipse, our supplier-focused collaboration platform, and we hosted a supplier event in the US in 2019 where more than 100 professionals and influential leaders came together in St. Louis to discuss critical sustainability issues.

(W1.4b) Provide details of any other water-related supplier engagement activity.

<table>
<thead>
<tr>
<th>Type of engagement</th>
<th>Innovation & collaboration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Details of engagement</td>
<td>Provide training and support on sustainable agriculture practices to improve water stewardship</td>
</tr>
<tr>
<td>% of suppliers by number</td>
<td>26-50</td>
</tr>
<tr>
<td>% of total procurement spend</td>
<td>76-100</td>
</tr>
</tbody>
</table>

Rationale for the coverage of your engagement

ABI is actively engaging with many agriculture and raw material suppliers, which represents more than 90% of the company’s water footprint, and the company is actively exploring new approaches to engage other suppliers such as packaging. Knowledge sharing is a critical strategy within our agricultural operations and supply chain. We use a robust internal benchmarking process to share best practices and drive productivity gains within our operations.

Impact of the engagement and measures of success

We engage directly with farmers in our supply chain to help them to improve productivity while conserving natural resources. We measure our success based on whether on-farm measurement shows water savings. Current measurement using this methodology shows savings of 20-50%/ton of crop. We employ a team of more than 150 researchers and agronomists globally who use the supplier engagement data to develop new crop varieties suited to local conditions, and work with farmers to improve their agricultural practices and operations. We also partner with more than 30 organizations, including leading universities, research centers, agribusiness companies, NGOs and technology firms to invest financial and technical resources in projects that build green infrastructure, conserve and restore forests, restore natural habitats, and conserve soil in key markets such as Brazil, South Africa and Zambia.

Comment

We engage directly with farmers in our supply chain to help them to improve productivity while conserving natural resources. In 2019, we worked with Ackermann, to release two new higher-quality, higher-yielding varieties – Yanara and Alhue, which were named with the help of our Marketing team drawing inspiration from the local Mapuche language.

(W1.4c) What is your organization’s rationale and strategy for prioritizing engagements with customers or other partners in its value chain?

We will continue to innovate and brew superior beers so we can address more consumers needs on more occasions. As consumers interact with each other in new ways, especially through technology, we need to engage with them where they are, in the formats they want and in ways that are convenient for them while also offering more experiences. We will use technology to better engage with our customers as a gateway to our consumers. For example, our Stella Artois brand launched the “Stella Friends” YouTube content series in Brazil, bringing high profile influencers together to share a meal and Stella Artois while discussing relevant cultural events. In South Korea the “Icons” campaign celebrated the stories of inspiring female leaders and the idea that success tastes better if you earn it. Our engagement success is measured through stakeholder engagement feedback and brand health metrics.
W2.1

(W2.1) Has your organization experienced any detrimental water-related impacts?
Yes

(W2.1a) Describe the water-related detrimental impacts experienced by your organization, your response, and the total financial impact.

Country/Area & River basin
South Africa

Type of impact driver & Primary impact driver
Physical | Drought

Primary impact
Supply chain disruption

Description of impact
Drought conditions in the Cape watershed Overberg and Swartland of South Africa, where ABI has facilities, caused lower production volume of barley used in the brewing of ABI's beer, resulting in the need to import malt from the international market, which constituted a substantive impact to the local operations.

Primary response
Use drought resistant crop varieties

Total financial impact
3500000

Description of response
Investment in breeding more drought resistant barley varieties (at the South African Barley Breeding Institute), better crop management practices in Overberg barley fields, and improved technology adoption by farmers in the West Coast region was developed in response to this impact. The impact, over $3.5 million, was calculated based on the costs to import because of lower local production. Whether it was rain at harvest or drought during critical growth periods, climate change continues to increase the intensity and frequency of these potentially devastating weather events. Increasing farmer resilience and reducing production volatility through improved breeding and crop management practices will continue to be a focus for our Research and Agronomy teams. We are working diligently to ensure our framework of "skilled, connected, and financially empowered" appropriately supports farmers to adopt the practices and tools they need to address the challenges they face in their local environments.

Country/Area & River basin
Mexico

Type of impact driver & Primary impact driver
Physical | Severe weather events

Primary impact
Supply chain disruption

Description of impact
Excess rainfall in the Bajío region of Mexico, where ABI has facilities, caused a delay in planting resulting in crop maturity during high temperatures, which constituted a substantive impact to the local operations.

Primary response
Promote the adoption of sustainable irrigation practices among suppliers

Total financial impact
3000000

Description of response
Improved irrigation technology was developed in response to this impact, investment in breeding more climate resistant barley varieties, and better crop management practices in Guanajuato area. The impact, over $3 million, was calculated based on the costs to import because of lower local barley production. The 2019 crop year proved to be challenging in many growing regions across the globe, with weather events threatening both quality and yield. Whether it was rain at harvest or drought during critical growth periods, climate change continues to increase the intensity and frequency of these potentially devastating weather events. Increasing farmer resilience and reducing production volatility through improved breeding and crop management practices will continue to be a focus for our Research and Agronomy teams. We are working diligently to ensure our framework of "skilled, connected, and financially empowered" appropriately supports farmers to adopt the practices and tools they need to address the challenges they face in their local environments.
In the reporting year, was your organization subject to any fines, enforcement orders, and/or other penalties for water-related regulatory violations?

Yes, fines, enforcement orders or other penalties but none that are considered as significant

W2.2a

Provide the total number and financial value of all water-related fines.

Row 1

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of fines</td>
<td>5</td>
</tr>
<tr>
<td>Total value of fines</td>
<td>125,286</td>
</tr>
<tr>
<td>% of total facilities/operations associated</td>
<td>2.5</td>
</tr>
<tr>
<td>Number of fines compared to previous reporting year</td>
<td>Higher</td>
</tr>
<tr>
<td>Comment</td>
<td>No fines in previous year.</td>
</tr>
</tbody>
</table>

W3. Procedures

W-FB3.1

How does your organization identify and classify potential water pollutants associated with its food, beverage, and tobacco sector activities that could have a detrimental impact on water ecosystems or human health?

Brewery effluent is fairly standardized before treatment processes—typically high in COD, BOD, TSS, nitrogen and phosphorous. Following treatment procedures, we monitor parameters required by regulations and according to standards specified by authorities. In cases where appropriate regulation is not in place, the company measures and manages parameters such as COD, BOD and TSS according to good practice. In brewery operations, effluent not treated appropriately could have negative environmental impacts such as pollution, nitrogen overload, temperature impact on water sources, etc., as a result of excess COD, BOD, TSS, nitrogen and phosphorous discharge. We consider water related impacts across our value-chain. In our supply chain, there is a risk of farmers contributing to pollution of water courses through on-field run off as a result of over application of chemicals or fertilizers. This could potentially lead to nitrogen loading, high phosphorus or pesticide levels, soil salination or sediment loading. We engage in active support to farmers to measure and manage the amount of chemicals used in the process. For example, a study was initiated in 2019 with the Agricultural Resource Council on a barley growing site in South Africa to assist local barley farmers in making more sustainable decisions about production. AB inBev uses the study’s results to educate the farmers on irrigation technologies, such as intensive and infields irrigation equipment maintenance, and production strategies to ensure better water quality. The direct effects of untreated effluent would negatively affect the surrounding local environment. The magnitude of the impact would be dependent on the local environmental settings (i.e., vegetation, proximity to water bodies, etc.) surrounding a facility. However, if properly recognized and contained, the magnitude of impact should not extend past the immediate surrounding areas of a facility. Today ABINBEV, has more than 97% of the effluent treated via BTS (Biological treatment System). The 3% remaining is not treated internally but via municipal net with written agreement with authorities. The effluent treatment used is mostly Primary treatment to segregate solids coming then equalization system with neutralization treatment to ensure control of pH before to go to classic secondary treatment with Anaerobic reactors (treating 80% of the organic load) and the 20% remaining is treated by aerobic system. In some operations we have also tertiary treatment (MF, RO, UF.) used when law is strict or used for internal reuse of effluent. Globally we have 95% of BTS efficiency that allow us to achieve the local regulations and meet legal parameters. We are years after years investing in new technologies as MBR, etc. and we can claim that today we have in our more than 270 operations all technologies available in market. We had only less than 0.5% of our effluent out of specs in FY19 mainly in Latin America due to operations needing more training and optimize controls. A plan of investment is ongoing to resolve most of these situations.

W-FB3.1a
(W-FB3.1a) Describe how your organization minimizes the adverse impacts of potential water pollutants on water ecosystems or human health associated with your food, beverage, and tobacco sector activities.

Potential water pollutant
Wastewater and sludge with high organic or suspended solids content

Activity/value chain stage
Agriculture – direct operations
Agriculture – supply chain

Description of water pollutant and potential impacts
In brewery operations, effluent not treated appropriately could have negative environmental impacts such as pollution, nitrogen overload, temperature impact on water sources etc., as a result of excess COD, BOD, TSS, nitrogen and phosphorous discharge. We engage in active management of effluent to avoid negative impacts such as pH, suspended solids, conductivity etc. This includes aerobic and anaerobic treatment processes. In our supply chain, there is a risk of farmers contributing to pollution of water courses through on-field run off as a result of over application of chemicals or fertilizers. This could potentially lead to nitrogen loading, high phosphorous or pesticide levels, soil salination or sediment loading. We engage in active support to farmers to measure and manage the amount of chemicals used in the process. Direct effects of untreated effluent would negatively affect the surrounding local environment. The magnitude of the impact would be dependent on the local environmental settings (i.e., vegetation, proximity to water bodies, etc.) surrounding a facility. However, if properly recognized and contained, the magnitude of impact should not extend past the immediate surrounding areas of a facility.

Management procedures
Soil conservation practices
Crop management practices
Sustainable irrigation and drainage management
Fertilizer management
Pesticide management
Calculation of fertilizer intensity data
Substitution of pesticides for less toxic or environmentally hazardous alternatives
Waste water management

Please explain
Today ABINBEV, has more than 97% of the effluent treated via BTS (Biological Treatment System). The 3% remaining is not treated internally but via municipal services with written agreements with authorities. To evaluate and measure success we have set our objective to reach 100% of all brewing sites with aerobic biological treatment using bacteria to metabolize the organic matter in the wastewater, resulting in microorganisms converting solids and allowing the settle-able solids to separate out. Anaerobic wastewater treatment is based on biological conversion of organic compounds by anaerobic microorganisms into biogas such as methane, which can be used biogas to produce onsite energy, as nitrogen use efficiency, total phosphorus applied, potassium use and Sulphur application in relation to the grower’s field-by-field barley production and performance. This information is uploaded to www.smartbarley.com, where growers can then access over 40 crop performance metrics for each field using a unique login and password. We manage the risks of the potential impacts outlined through engaging in active support to farmers using this SmartBarley tool to measure and manage the amount of inputs used. Growers can anonymously benchmark their fields against other growers through a selection of metrics that represent their field productivity, input use efficiency and crop management practices.

W3.3

(W3.3) Does your organization undertake a water-related risk assessment?
Yes, water-related risks are assessed

W3.3a
(W3.3a) Select the options that best describe your procedures for identifying and assessing water-related risks.

Direct operations

Coverage
- Full

Risk assessment procedure
- Water risks are assessed as part of other company-wide risk assessment system

Frequency of assessment
- More than once a year

How far into the future are risks considered?
- More than 6 years

Type of tools and methods used
- Tools on the market
 - Enterprise Risk Management
 - Other

Tools and methods used
- WRI Aqueduct
- Internal company methods

Comment
We regularly update water risk assessments at our brewing and other manufacturing facilities throughout the world based on short- and long-term risks. First, we apply the World Resources Institute's (WRI) Aqueduct tool, using WRI 2040, and ask a small number of high-level questions. If the tool indicates that a particular facility may be at risk, we look deeper into that facility, covering areas of physical, regulatory and reputation risk using our own custom-designed assessment tool that requires action plans. Using the WRI 2040 filter we also projected anticipated water risk over this time period.

Supply chain

Coverage
- Full

Risk assessment procedure
- Water risks are assessed as part of other company-wide risk assessment system

Frequency of assessment
- Annually

How far into the future are risks considered?
- More than 6 years

Type of tools and methods used
- Tools on the market
 - Other

Tools and methods used
- Water Footprint Network Assessment tool
- WRI Aqueduct
- Internal company methods

Comment
ABI has undertaken a water footprinting analysis of all major crops based on the values provided by the Water Footprinting Network for each sourcing region. We also engage with local water stakeholders to verify the risk and seek ways to partner on solutions. We conduct water risk assessments with suppliers where it makes sense to do so. While this is not every supplier, it is every supplier we have identified from a company-wide assessment and determined to be a key supplier regarding water. Using the WRI 2040 filter we also projected anticipated water risk over this time period.

Other stages of the value chain

Coverage
- None

Risk assessment procedure
- <Not Applicable>

Frequency of assessment
- <Not Applicable>

How far into the future are risks considered?
- <Not Applicable>

Type of tools and methods used
- <Not Applicable>

Tools and methods used
- <Not Applicable>

Comment
- Not Applicable

W3.3b
Which of the following contextual issues are considered in your organization’s water-related risk assessments?

<table>
<thead>
<tr>
<th>Relevance & inclusion</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water availability at a basin/catchment level</td>
<td>Relevant, always included</td>
</tr>
<tr>
<td>Water quality at a basin/catchment level</td>
<td>Relevant, always included</td>
</tr>
<tr>
<td>Stakeholder conflicts concerning water resources at a basin/catchment level</td>
<td>Relevant, always included</td>
</tr>
<tr>
<td>Implications of water on your key commodities/ raw materials</td>
<td>Relevant, always included</td>
</tr>
<tr>
<td>Water-related regulatory frameworks</td>
<td>Relevant, always included</td>
</tr>
<tr>
<td>Status of ecosystems and habitats</td>
<td>Relevant, always included</td>
</tr>
<tr>
<td>Access to fully-functioning, safely managed WASH services for all employees</td>
<td>Relevant, always included</td>
</tr>
<tr>
<td>Other contextual issues, please specify</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

Water availability at a basin/catchment level
Water is an essential ingredient in our product and for our supply chain. Our ability to both withdraw and discharge water, and the quality of that water is monitored by our global supply organization with zone and facility involvement. To identify potential risk, we use a two-step process that uses the WRI Aqueduct tool and, when a facility has been identified as high risk, our own custom designed assessment tool ABI Water Risk Toolkit for onsite use. We assembled a panel of experts on watersheds, water systems and sustainable agriculture. This technical advisory committee supports our strategy development and execution, provides feedback on the economic, environmental and social impacts of our initiatives, and makes introductions to water groups, local authorities and policy makers. Water availability improvements are measured based on the local relevance such as per capita or total renewable freshwater demand vs supply, ground water depletion rates vs gap between abstraction and recharge, surface water levels, reduced variance in surface water and ground water levels during drought, availability to communities. We launched our 2025 Sustainability Goals. As we progress towards these 2025 goals, we aim to ensure that 100% of our communities in high stress areas will have measurably improved water availability.

Water quality at a basin/catchment level
Water quality is very relevant to our business as without good quality water and ingredients, we are unable to brew quality beer. To identify potential risk, we use a customized company water risk tool focused on water availability, the impact of deteriorating water quality as well as reputation and regulation pressure. We have stated as part of our 2025 goals that 100% of our facilities will be engaged in water efficiency efforts; and 100% of our communities in high stress areas will have measurably improved water availability and quality by 2025. Water quality improvements are measured based on the local relevance of the challenge and includes conductivity & dissolved solids, pH, salinity, dissolved oxygen, turbidity, suspended solids, river health, improved quality of drinking water, species richness, species abundance.

Stakeholder conflicts concerning water resources at a basin/catchment level
Water conflicts can affect our access to water resources. Our internal water risk tool tests aspects such as local community concern about water issues in general, specific concerns about the water impact of the private sector and also our company. We also monitor any negative press reports on water in the region as indicative of potential stakeholder concern. For example, large-scale deforestation and sedimentation in the Jaguar River have affected the watershed, impacting quality and quantity of water available to the community and our business. In partnership with The Nature Conservancy, we are working with external partners to invest in long-term restoration projects of the watershed. We invited the local landowners at farms within the basin to take part in our project, and five of them signed on. These farms cover one third of the plot area that we mapped, which provides the opportunity to make a significant impact. Through the program, we provide farmers and landowners financial incentives, known as Payment for Environmental Services (PES), that encourage environmentally responsible land management and the conservation of natural resources in order to prevent erosion and sediments. In addition, we have applied our internal company methods such as water efficiency, supplier engagement on packaging and agronomic support to farmers and assembled a panel of experts on watersheds, water systems and sustainable agriculture. This technical advisory committee supports our strategy development and execution, provides feedback on the economic, environmental and social impacts of our initiatives, and makes introductions to water groups, local authorities and policy makers. In 2019, we progress towards achieving our 2025 Sustainability Goals, which we are currently working towards to ensure 100% of our communities in high stress areas will have measurably improved water availability and quality.

Implications of water on your key commodities/raw materials
Water is an essential ingredient in our product and for our agricultural supply chain. We work closely with our barley and other agricultural ingredient suppliers on this issue, providing tools and knowledge-sharing opportunities. ABI developed a customized approach to map the implications of water risk on key commodities. We use the WRI Aqueduct tool and onsite assessments to identify water risks in our barley supply chain. Based on our stakeholder mapping and engagement strategy, we meet with a variety of stakeholders to verify water risk and search for ways to collaborate to improve water management for all users. Our water risk tool includes the water risk and total sourcing volume from that region, multiplied with factors on cost and complexity of shifting sourcing and also stakeholder concerns. We also used the SAI Platform as a pilot program within our German hop growing suppliers to assess this contextual issue. In addition, following the completion of our 2017 environmental goals, we assembled a panel of experts on watersheds, water systems and sustainable agriculture. This technical advisory committee supports our strategy development and execution, provides feedback on the economic, environmental and social impacts of our initiatives, and makes introductions to water groups, local authorities and policy makers. In 2018, we set our 2025 Sustainability Goals, which we are currently working towards to ensure 100% of our communities in high stress areas will have measurably improved water availability and quality.

Water-related regulatory frameworks
We include local regulatory frameworks and tariffs (existing and proposed) within our risk assessment because these issues can present operational and financial risk to our operations. This includes considerations such as water use licence, water quantity limitations etc. Utilizing internal company methods such as Voyager, we manage all our facilities in compliance with regulations and within regulatory frameworks, where they exist. Regulatory entities are included in our stakeholder mapping and engagement process. In addition, where the water regulatory frameworks are weak or lacking, we build best practices into our management system. We monitor water tariffs (where they exist) and other costs in our management system in order to manage water costs within set targets. In addition, following the completion of our previous environmental goals, we assembled a panel of experts on watersheds, water systems and sustainable agriculture. This technical advisory committee supports our strategy development and execution, provides feedback on the economic, environmental and social impacts of our initiatives, and makes introductions to water groups, local authorities and policy makers. In 2019, as we move forward with our 2025 Sustainability Goals, we evaluated and considered regulatory guidance and framework as it applies to several locations where we operate.

Status of ecosystems and habitats
Healthy watersheds are important for maintaining the quality and supply of water we require for our operations. In addition, we are committed to helping our independent barley growers improve their own water productivity and protecting local watersheds. On both fronts, we work with governments, communities and NGOs on watershed protection measures in key areas around the world. We use the WRI Aqueduct tool and onsite assessments to identify water risks in our beverage operations and barley supply chain. Additionally, based on our stakeholder mapping and engagement strategy, we meet with a variety of stakeholders to verify water risk and search for ways to collaborate to improve water management for all users. We also use the SAI Platform as a pilot program within our German hop growing suppliers to assess this contextual issue. In addition to obtaining important information from our watershed protection engagement process, we have formed an external technical advisory committee of experts on watersheds, water systems, collaboration and sustainable agriculture. Based on these results and findings, breweries in water-stressed areas are implementing or considering green infrastructure projects, which will have a positive impact on ecosystems and habitat locally. In addition, following the completion of our previous environmental goals, we assembled a panel of experts on watersheds, water systems and sustainable agriculture. This technical advisory committee supports our strategy development and execution, provides feedback on the economic, environmental and social impacts of our initiatives, and makes introductions to water groups, local authorities and policy makers. In 2018, we set our 2025 Sustainability Goals, including continued partnerships with NGOs, local communities, and other stakeholders that have continued to progress water security through nature-based solutions and sustainable watershed management.

Access to fully-functioning, safely managed WASH services for all employees
Fully functioning WASH services are available for 100% ABI employees. This is formally managed and reported through our internal Voyager Plant Optimization (vPO) global management system that helps employees manage risks at all facilities. These services are incorporated into food safety audits and risk assessments inside the company Voyager system, where sites report on criteria on compliance with these measures. Hand washing is a fundamental requirement of food safety at all ABI breweries. This in and of itself demands that water be available along with soap – (audited as part of our food safety programs) and that the water is clean and sanitary. We perform rigorous testing on incoming water to ensure it contains no pathogens or bacteria.

Other contextual issues, please specify
Not considered

Please explain

Customers
Our customers (i.e. our consumers) are retailers and wholesalers who may or may not share the same regions and watersheds we have identified as key to our facilities and agricultural partners. We are aware that some customers are concerned about water issues related to our business and want assurance that we are managing them appropriately. To address this, we engage our consumers on water through a number of our brands. For example, in 2019 our Stella Artois brand, as part of its ongoing partnership with Water.org, launched a Super Bowl campaign with actors Jeff Bridges and Sarah Jessica Parker. The spot earned 7.6 billion impressions and received 418,000 social mentions while promoting clean water access to 270,000 people in the developing world. In Brazil, our Amira water brand donates 100% of its profits to projects that bring drinking water to poverty-stricken communities. Lastly, in October 2019 we launched Zahas, another water brand whose proceeds are used to protect the high inland wetlands that serve as critical ecosystems for Colombia’s water sources. We engage with both company-owned and independent wholesalers and other customers at meetings throughout the year. We also work with wholesalers that may share the same watersheds as our production facilities to share information on watershed concerns and employee engagement opportunities.
<table>
<thead>
<tr>
<th>Relevance & inclusion</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Employees</td>
<td>Relevant, always included</td>
</tr>
<tr>
<td>Investors</td>
<td>Relevant, always included</td>
</tr>
<tr>
<td>Local communities</td>
<td>Relevant, always included</td>
</tr>
<tr>
<td>NGOs</td>
<td>Relevant, always included</td>
</tr>
<tr>
<td>Other water users at a basin/catchment level</td>
<td>Relevant, always included</td>
</tr>
<tr>
<td>Regulators</td>
<td>Relevant, always included</td>
</tr>
<tr>
<td>River basin management authorities</td>
<td>Relevant, always included</td>
</tr>
<tr>
<td>Statutory special interest groups at a local level</td>
<td>Relevant, always included</td>
</tr>
<tr>
<td>Suppliers</td>
<td>Relevant, always included</td>
</tr>
<tr>
<td>Water utilities at a local level</td>
<td>Relevant, always included</td>
</tr>
<tr>
<td>Other stakeholder, please specify</td>
<td>Not considered</td>
</tr>
</tbody>
</table>

W3.3d
Immediate operational water risk is considered on a 3-5-year basis while planning for new facilities such as a brewery requires a 25-30 year view. Water availability and quality is monitored by our global supply organization with zone and facility involvement. To identify potential risk, we employ a two-step process using WRI Aqueduct tool and, for high risk facilities, our own custom water assessment tool for onsite use. The rationale for these tools is to provide visibility of our operational resilience and to inform the appropriate action and investment to manage water related risk? We work to preserve and improve access to fresh water through collaboration with stakeholders. To help mitigate water-related risks within our direct operations and other stages of our value chain we’ve established a 2025 goal, with a baseline in FY2017, to measurably improve water availability and quality within all of the communities identified as high-risk in which we operate. 36 of the watersheds in which we operate have been identified as high-risk via our assessment methodologies. We aim to measurably improve water availability and quality within these water stressed areas via in-plant (direct) water conservation and supply chain (indirect) agricultural development assistance and watershed protection. The supply chain water risk is measured via a separate tool to assess water risk via WWF and WRI tools for all sourcing areas, informing further analysis based on volume sourced, stakeholder concerns and the impact on cost and quality of sourcing materials. For example, if sourcing a commodity such as barley in South Africa, responses would focus on managing water related risk or finding alternative sourcing areas nearby. The relevant improvement in water availability (e.g. dam level) or quality (e.g. pH) will be based on local water risk. Relevant will be a meaningful, measurable impact compared to the scientific definition of the water challenge in the specified region.

W4. Risks and opportunities

W4.1

(W4.1) Have you identified any inherent water-related risks with the potential to have a substantive financial or strategic impact on your business?
Yes, both in direct operations and the rest of our value chain.

W4.1a

(W4.1a) How does your organization define substantive financial or strategic impact on your business?

(i) Clean water is a limited resource in many parts of the world, facing unprecedented challenges from climate change and the resulting change in precipitation patterns and frequency of extreme weather, over-exploitation, increasing pollution, and poor water management. As demand for water continues to increase, water becomes scarcer and the quality of available water deteriorates, we may be affected by increasing production costs or capacity constraints, which could have a substantive negative impact on our business and results of operations, including our supply chain. In this instance, we define substantive change as change driven by water related events or trends that has the potential to cause significant impact on business, operations, assets, revenue or expenditures where we are not able to manage the probable likelihood of that impact occurring. An example of substantive impact is investment requirements due to the risk of compromised water quality at our brewing operations in the water basins near Bucaramanga, Colombia. AB InBev has engaged in two water funds to help address the water quality and availability issues facing the region. The primary source of water for the city—and our brewery there—is the Surata River, which originates in the Santurban High Andean Wetland. This fragile ecosystem is being affected by agricultural practices, formal and informal mining, deforestation and rising global temperatures, resulting in water availability and quality challenges. To aid in addressing this we are a founding partner of the Alianza BioCuenca, the water fund for Norte de Santander, where 70% of the Santurban High Andean Wetland is located. The Alianza BioCuenca is the operator of the MiParamo watershed protection project, which is focused on forest conservation, ecosystem restoration, environmental technical training in communities, sustainable agricultural practices and watershed monitoring.

(ii) At AB InBev we have developed key performance indicators for our company and beverage supply chain to measure substantive change and to manage and reduce the likelihood of negative impacts occurring. Our goals are set at a level which measures substantive change for our company, such as the vital importance of sufficient amounts of good quality freshwater available for use. The indicators are:

1. By 2025 - The company has published a public goal to measurably improve water availability and quality in high risk watersheds. In each of the high-risk watersheds, specific targets and goals are being set based on the relevant local water risks and priority response areas.
2. By 2025 - Reduce global water usage to a leading-edge 2.8 hectoliters of water per hectoliter of production. By the end of 2019, we were 60% towards the goal having reached 2.95 from a baseline of 3.14.

In addition, facility-level goals are developed in alignment with corporate indicators. Goals drive our performance, and the collaborative process we use to set these targets helps ensure success. All levels of our organization are aligned on this approach and intensely focused on achieving set goals.

(iii) A risk creates a substantive change if it has a net financial impact of no less than 3% of the overall EBITDA of facility. Once exposed, these financial risks are then fed into the broader group-wide risk assessment reporting system. Most material risks will be addressed by adequate mitigation actions for which appropriate CAPEX and OPEX may be required.

(iv) We apply the definition of substantive change to both our direct operations and our supply chain.

W4.1b

(W4.1b) What is the total number of facilities exposed to water risks with the potential to have a substantive financial or strategic impact on your business, and what proportion of your company-wide facilities does this represent?

<table>
<thead>
<tr>
<th>Total number of facilities exposed to water risk</th>
<th>% company-wide facilities this represents</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1-25</td>
<td>ABI has expanded our water risk assessment to include vertical operations such as maltings as well as into our agricultural sourcing regions. We report only high-risk brewing sites here in order to provide comparable data.</td>
</tr>
</tbody>
</table>
By river basin, what is the number and proportion of facilities exposed to water risks that could have a substantive financial or strategic impact on your business, and what is the potential business impact associated with those facilities?

<table>
<thead>
<tr>
<th>Country/Area & River basin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mozambique</td>
</tr>
</tbody>
</table>

Number of facilities exposed to water risk
1

% company-wide facilities this represents
Less than 1%

Production value for the metals & mining activities associated with these facilities
<Not Applicable>

% company’s annual electricity generation that could be affected by these facilities
<Not Applicable>

% company’s global oil & gas production volume that could be affected by these facilities
<Not Applicable>

% company’s total global revenue that could be affected
1-10

Comment
None

<table>
<thead>
<tr>
<th>Country/Area & River basin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mozambique Other, please specify (Nampula watershed)</td>
</tr>
</tbody>
</table>

Number of facilities exposed to water risk
1

% company-wide facilities this represents
Less than 1%

Production value for the metals & mining activities associated with these facilities
<Not Applicable>

% company’s annual electricity generation that could be affected by these facilities
<Not Applicable>

% company’s global oil & gas production volume that could be affected by these facilities
<Not Applicable>

% company’s total global revenue that could be affected
1-10

Comment
None

<table>
<thead>
<tr>
<th>Country/Area & River basin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Namibia Other, please specify (Namibia watershed)</td>
</tr>
</tbody>
</table>

Number of facilities exposed to water risk
1

% company-wide facilities this represents
Less than 1%

Production value for the metals & mining activities associated with these facilities
<Not Applicable>

% company’s annual electricity generation that could be affected by these facilities
<Not Applicable>

% company’s global oil & gas production volume that could be affected by these facilities
<Not Applicable>

% company’s total global revenue that could be affected
1-10

Comment
None
<table>
<thead>
<tr>
<th>Country/Area & River basin</th>
<th>South Africa</th>
<th>Other, please specify (Ithayi watershed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of facilities exposed to water risk</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>% company-wide facilities this represents</td>
<td>Less than 1%</td>
<td></td>
</tr>
<tr>
<td>Production value for the metals & mining activities associated with these facilities</td>
<td><Not Applicable></td>
<td></td>
</tr>
<tr>
<td>% company’s annual electricity generation that could be affected by these facilities</td>
<td><Not Applicable></td>
<td></td>
</tr>
<tr>
<td>% company’s global oil & gas production volume that could be affected by these facilities</td>
<td><Not Applicable></td>
<td></td>
</tr>
<tr>
<td>% company’s total global revenue that could be affected</td>
<td>1-10</td>
<td></td>
</tr>
<tr>
<td>Comment</td>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Country/Area & River basin</th>
<th>South Africa</th>
<th>Incomati</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of facilities exposed to water risk</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>% company-wide facilities this represents</td>
<td>Less than 1%</td>
<td></td>
</tr>
<tr>
<td>Production value for the metals & mining activities associated with these facilities</td>
<td><Not Applicable></td>
<td></td>
</tr>
<tr>
<td>% company’s annual electricity generation that could be affected by these facilities</td>
<td><Not Applicable></td>
<td></td>
</tr>
<tr>
<td>% company’s global oil & gas production volume that could be affected by these facilities</td>
<td><Not Applicable></td>
<td></td>
</tr>
<tr>
<td>% company’s total global revenue that could be affected</td>
<td>1-10</td>
<td></td>
</tr>
<tr>
<td>Comment</td>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Country/Area & River basin</th>
<th>South Africa</th>
<th>Other, please specify (Newlands watershed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of facilities exposed to water risk</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>% company-wide facilities this represents</td>
<td>Less than 1%</td>
<td></td>
</tr>
<tr>
<td>Production value for the metals & mining activities associated with these facilities</td>
<td><Not Applicable></td>
<td></td>
</tr>
<tr>
<td>% company’s annual electricity generation that could be affected by these facilities</td>
<td><Not Applicable></td>
<td></td>
</tr>
<tr>
<td>% company’s global oil & gas production volume that could be affected by these facilities</td>
<td><Not Applicable></td>
<td></td>
</tr>
<tr>
<td>% company’s total global revenue that could be affected</td>
<td>1-10</td>
<td></td>
</tr>
<tr>
<td>Comment</td>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Country/Area & River basin</th>
<th>United Republic of Tanzania</th>
<th>Other, please specify (Dar es Salaam watershed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of facilities exposed to water risk</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>% company-wide facilities this represents</td>
<td>Less than 1%</td>
<td></td>
</tr>
</tbody>
</table>
Country/Area & River basin

<table>
<thead>
<tr>
<th>Country/Area & River basin</th>
<th>Uganda</th>
<th>Nile</th>
<th>Number of facilities exposed to water risk</th>
<th>1</th>
<th>% company-wide facilities this represents</th>
<th>Less than 1%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Production value for the metals & mining activities associated with these facilities</td>
<td><Not Applicable></td>
<td>% company’s annual electricity generation that could be affected by these facilities</td>
<td><Not Applicable></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td><Not Applicable></td>
<td>% company’s global oil & gas production volume that could be affected by these facilities</td>
<td><Not Applicable></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td><Not Applicable></td>
<td>% company’s total global revenue that could be affected</td>
<td>1-10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Comment</td>
<td>None</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Country/Area & River basin

<table>
<thead>
<tr>
<th>Country/Area & River basin</th>
<th>Zambia</th>
<th>Zambezi</th>
<th>Number of facilities exposed to water risk</th>
<th>1</th>
<th>% company-wide facilities this represents</th>
<th>Less than 1%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Production value for the metals & mining activities associated with these facilities</td>
<td><Not Applicable></td>
<td>% company’s annual electricity generation that could be affected by these facilities</td>
<td><Not Applicable></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td><Not Applicable></td>
<td>% company’s global oil & gas production volume that could be affected by these facilities</td>
<td><Not Applicable></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td><Not Applicable></td>
<td>% company’s total global revenue that could be affected</td>
<td>1-10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Comment</td>
<td>None</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Country/Area & River basin

<table>
<thead>
<tr>
<th>Country/Area & River basin</th>
<th>China</th>
<th>Other, please specify (Jinshibai watershed)</th>
<th>Number of facilities exposed to water risk</th>
<th>1</th>
<th>% company-wide facilities this represents</th>
<th>Less than 1%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Production value for the metals & mining activities associated with these facilities</td>
<td><Not Applicable></td>
<td>% company’s annual electricity generation that could be affected by these facilities</td>
<td><Not Applicable></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td><Not Applicable></td>
<td>% company’s global oil & gas production volume that could be affected by these facilities</td>
<td><Not Applicable></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td><Not Applicable></td>
<td>% company’s total global revenue that could be affected</td>
<td>1-10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Comment</td>
<td>None</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
% company's total global revenue that could be affected
1-10

Comment
None

Country/Area & River basin

<table>
<thead>
<tr>
<th>India</th>
<th>Other, please specify (Aurangabad watershed)</th>
</tr>
</thead>
</table>

Number of facilities exposed to water risk
1

% company-wide facilities this represents
Less than 1%

Production value for the metals & mining activities associated with these facilities
<Not Applicable>

% company's annual electricity generation that could be affected by these facilities
<Not Applicable>

% company's global oil & gas production volume that could be affected by these facilities
<Not Applicable>

% company's total global revenue that could be affected
1-10

Comment
None

Country/Area & River basin

<table>
<thead>
<tr>
<th>India</th>
<th>Ganges - Brahmaputra</th>
</tr>
</thead>
</table>

Number of facilities exposed to water risk
1

% company-wide facilities this represents
Less than 1%

Production value for the metals & mining activities associated with these facilities
<Not Applicable>

% company's annual electricity generation that could be affected by these facilities
<Not Applicable>

% company's global oil & gas production volume that could be affected by these facilities
<Not Applicable>

% company's total global revenue that could be affected
1-10

Comment
None

Country/Area & River basin

<table>
<thead>
<tr>
<th>India</th>
<th>Godavari</th>
</tr>
</thead>
</table>

Number of facilities exposed to water risk
1

% company-wide facilities this represents
Less than 1%

Production value for the metals & mining activities associated with these facilities
<Not Applicable>

% company's annual electricity generation that could be affected by these facilities
<Not Applicable>

% company's global oil & gas production volume that could be affected by these facilities
<Not Applicable>

% company's total global revenue that could be affected
1-10

Comment
None
<table>
<thead>
<tr>
<th>Country/Area & River basin</th>
<th>Number of facilities exposed to water risk</th>
<th>% company-wide facilities this represents</th>
<th>Production value for the metals & mining activities associated with these facilities</th>
<th>% company’s annual electricity generation that could be affected by these facilities</th>
<th>% company’s global oil & gas production volume that could be affected by these facilities</th>
<th>% company’s total global revenue that could be affected</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>India</td>
<td>1</td>
<td>Less than 1%</td>
<td>＜Not Applicable＞</td>
<td>＜Not Applicable＞</td>
<td>＜Not Applicable＞</td>
<td>1-10</td>
<td>None</td>
</tr>
<tr>
<td>Other, please specify (Neemrana watershed)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colombia</td>
<td>1</td>
<td>Less than 1%</td>
<td>＜Not Applicable＞</td>
<td>＜Not Applicable＞</td>
<td>＜Not Applicable＞</td>
<td>1-10</td>
<td>None</td>
</tr>
<tr>
<td>Magdalena</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peru</td>
<td>1</td>
<td>Less than 1%</td>
<td>＜Not Applicable＞</td>
<td>＜Not Applicable＞</td>
<td>＜Not Applicable＞</td>
<td>1-10</td>
<td>None</td>
</tr>
<tr>
<td>Ate watershed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Country/Area & River basin

<table>
<thead>
<tr>
<th>Country/Area & River basin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peru</td>
</tr>
<tr>
<td>Other, please specify (Motupe watershed)</td>
</tr>
</tbody>
</table>

Number of facilities exposed to water risk

<table>
<thead>
<tr>
<th>Number of facilities exposed to water risk</th>
<th>Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Less than 1%</td>
</tr>
</tbody>
</table>

Production value for the metals & mining activities associated with these facilities

<table>
<thead>
<tr>
<th>Production value for the metals & mining activities associated with these facilities</th>
<th>Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>% company’s annual electricity generation that could be affected by these facilities</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>% company’s global oil & gas production volume that could be affected by these facilities</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>% company’s total global revenue that could be affected</td>
<td>1-10</td>
</tr>
</tbody>
</table>

Comment

<table>
<thead>
<tr>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
</tr>
</tbody>
</table>

Country/Area & River basin

<table>
<thead>
<tr>
<th>Brazil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tocantins</td>
</tr>
</tbody>
</table>

Number of facilities exposed to water risk

<table>
<thead>
<tr>
<th>Number of facilities exposed to water risk</th>
<th>Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Less than 1%</td>
</tr>
</tbody>
</table>

Production value for the metals & mining activities associated with these facilities

<table>
<thead>
<tr>
<th>Production value for the metals & mining activities associated with these facilities</th>
<th>Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>% company’s annual electricity generation that could be affected by these facilities</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>% company’s global oil & gas production volume that could be affected by these facilities</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>% company’s total global revenue that could be affected</td>
<td>1-10</td>
</tr>
</tbody>
</table>

Comment

<table>
<thead>
<tr>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
</tr>
</tbody>
</table>

Country/Area & River basin

<table>
<thead>
<tr>
<th>Brazil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other, please specify (Aquiraz watershed)</td>
</tr>
</tbody>
</table>

Number of facilities exposed to water risk

<table>
<thead>
<tr>
<th>Number of facilities exposed to water risk</th>
<th>Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Less than 1%</td>
</tr>
</tbody>
</table>

Production value for the metals & mining activities associated with these facilities

<table>
<thead>
<tr>
<th>Production value for the metals & mining activities associated with these facilities</th>
<th>Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>% company’s annual electricity generation that could be affected by these facilities</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>% company’s global oil & gas production volume that could be affected by these facilities</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>% company’s total global revenue that could be affected</td>
<td>1-10</td>
</tr>
</tbody>
</table>

Comment

<table>
<thead>
<tr>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
</tr>
<tr>
<td>Country/Area & River basin</td>
</tr>
<tr>
<td>---------------------------</td>
</tr>
<tr>
<td>Number of facilities exposed to water risk</td>
</tr>
<tr>
<td>% company-wide facilities this represents</td>
</tr>
<tr>
<td>Production value for the metals & mining activities associated with these facilities</td>
</tr>
<tr>
<td>% company’s annual electricity generation that could be affected by these facilities</td>
</tr>
<tr>
<td>% company’s global oil & gas production volume that could be affected by these facilities</td>
</tr>
<tr>
<td>% company’s total global revenue that could be affected</td>
</tr>
<tr>
<td>Comment</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Country/Area & River basin</th>
<th>Brazil</th>
<th>Parana</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of facilities exposed to water risk</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>% company-wide facilities this represents</td>
<td>Less than 1%</td>
<td></td>
</tr>
<tr>
<td>Production value for the metals & mining activities associated with these facilities</td>
<td>Not Applicable</td>
<td></td>
</tr>
<tr>
<td>% company’s annual electricity generation that could be affected by these facilities</td>
<td>Not Applicable</td>
<td></td>
</tr>
<tr>
<td>% company’s global oil & gas production volume that could be affected by these facilities</td>
<td>Not Applicable</td>
<td></td>
</tr>
<tr>
<td>% company’s total global revenue that could be affected</td>
<td>1-10</td>
<td></td>
</tr>
<tr>
<td>Comment</td>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Country/Area & River basin</th>
<th>Brazil</th>
<th>Other, please specify (Rio de Janeiro watershed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of facilities exposed to water risk</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>% company-wide facilities this represents</td>
<td>Less than 1%</td>
<td></td>
</tr>
<tr>
<td>Production value for the metals & mining activities associated with these facilities</td>
<td>Not Applicable</td>
<td></td>
</tr>
<tr>
<td>% company’s annual electricity generation that could be affected by these facilities</td>
<td>Not Applicable</td>
<td></td>
</tr>
<tr>
<td>% company’s global oil & gas production volume that could be affected by these facilities</td>
<td>Not Applicable</td>
<td></td>
</tr>
<tr>
<td>% company’s total global revenue that could be affected</td>
<td>1-10</td>
<td></td>
</tr>
<tr>
<td>Comment</td>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Country/Area & River basin</th>
<th>Brazil</th>
<th>Paraiba Do Sul</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of facilities exposed to water risk</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>% company-wide facilities this represents</td>
<td>Less than 1%</td>
<td></td>
</tr>
<tr>
<td>Production value for the metals & mining activities associated with these facilities</td>
<td>Not Applicable</td>
<td></td>
</tr>
<tr>
<td>% company’s annual electricity generation that could be affected by these facilities</td>
<td>Not Applicable</td>
<td></td>
</tr>
<tr>
<td>% company’s global oil & gas production volume that could be affected by these facilities</td>
<td>Not Applicable</td>
<td></td>
</tr>
<tr>
<td>% company’s total global revenue that could be affected</td>
<td>1-10</td>
<td></td>
</tr>
<tr>
<td>Comment</td>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>
Brazil

<table>
<thead>
<tr>
<th>Number of facilities exposed to water risk</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>% company-wide facilities this represents</td>
<td>Less than 1%</td>
</tr>
<tr>
<td>Production value for the metals & mining activities associated with these facilities</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>% company’s annual electricity generation that could be affected by these facilities</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>% company’s global oil & gas production volume that could be affected by these facilities</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>% company’s total global revenue that could be affected</td>
<td>1-10</td>
</tr>
<tr>
<td>Comment</td>
<td>None</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Country/Area & River basin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sao Francisco</td>
</tr>
</tbody>
</table>

Dominican Republic

<table>
<thead>
<tr>
<th>Number of facilities exposed to water risk</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>% company-wide facilities this represents</td>
<td>Less than 1%</td>
</tr>
<tr>
<td>Production value for the metals & mining activities associated with these facilities</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>% company’s annual electricity generation that could be affected by these facilities</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>% company’s global oil & gas production volume that could be affected by these facilities</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>% company’s total global revenue that could be affected</td>
<td>1-10</td>
</tr>
<tr>
<td>Comment</td>
<td>None</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Country/Area & River basin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dominican Republic, Other, please specify (Santo Domingo watershed)</td>
</tr>
</tbody>
</table>

Argentina

<table>
<thead>
<tr>
<th>Number of facilities exposed to water risk</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>% company-wide facilities this represents</td>
<td>Less than 1%</td>
</tr>
<tr>
<td>Production value for the metals & mining activities associated with these facilities</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>% company’s annual electricity generation that could be affected by these facilities</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>% company’s global oil & gas production volume that could be affected by these facilities</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>% company’s total global revenue that could be affected</td>
<td>1-10</td>
</tr>
<tr>
<td>Comment</td>
<td>None</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Country/Area & River basin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colorado (Argentina)</td>
</tr>
</tbody>
</table>

Bolivia (Plurinational State of)

<table>
<thead>
<tr>
<th>Number of facilities exposed to water risk</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>% company-wide facilities this represents</td>
<td>Less than 1%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Country/Area & River basin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amazonas</td>
</tr>
<tr>
<td>Country/Area & River basin</td>
</tr>
<tr>
<td>--------------------------</td>
</tr>
<tr>
<td>Number of facilities exposed to water risk</td>
</tr>
<tr>
<td>% company-wide facilities this represents</td>
</tr>
<tr>
<td>Production value for the metals & mining activities associated with these facilities</td>
</tr>
<tr>
<td>% company’s annual electricity generation that could be affected by these facilities</td>
</tr>
<tr>
<td>% company’s global oil & gas production volume that could be affected by these facilities</td>
</tr>
<tr>
<td>% company’s total global revenue that could be affected</td>
</tr>
<tr>
<td>Comment</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Country/Area & River basin</th>
<th>Mexico</th>
<th>Other, please specify (Guadalajara watershed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of facilities exposed to water risk</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>% company-wide facilities this represents</td>
<td>Less than 1%</td>
<td></td>
</tr>
<tr>
<td>Production value for the metals & mining activities associated with these facilities</td>
<td><Not Applicable></td>
<td></td>
</tr>
<tr>
<td>% company’s annual electricity generation that could be affected by these facilities</td>
<td><Not Applicable></td>
<td></td>
</tr>
<tr>
<td>% company’s global oil & gas production volume that could be affected by these facilities</td>
<td><Not Applicable></td>
<td></td>
</tr>
<tr>
<td>% company’s total global revenue that could be affected</td>
<td>1-10</td>
<td></td>
</tr>
<tr>
<td>Comment</td>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Country/Area & River basin</th>
<th>Mexico</th>
<th>Panuco</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of facilities exposed to water risk</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>% company-wide facilities this represents</td>
<td>Less than 1%</td>
<td></td>
</tr>
<tr>
<td>Production value for the metals & mining activities associated with these facilities</td>
<td><Not Applicable></td>
<td></td>
</tr>
<tr>
<td>% company’s annual electricity generation that could be affected by these facilities</td>
<td><Not Applicable></td>
<td></td>
</tr>
<tr>
<td>% company’s global oil & gas production volume that could be affected by these facilities</td>
<td><Not Applicable></td>
<td></td>
</tr>
<tr>
<td>% company’s total global revenue that could be affected</td>
<td>1-10</td>
<td></td>
</tr>
<tr>
<td>Comment</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Country/Area & River basin</td>
<td>Mexico</td>
<td>Other, please specify (Torrean watershed)</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--------</td>
<td>--</td>
</tr>
</tbody>
</table>

Number of facilities exposed to water risk
1

% company-wide facilities this represents
Less than 1%

Production value for the metals & mining activities associated with these facilities
<Not Applicable>

% company’s annual electricity generation that could be affected by these facilities
<Not Applicable>

% company’s global oil & gas production volume that could be affected by these facilities
<Not Applicable>

% company’s total global revenue that could be affected
1-10

Comment
None

<table>
<thead>
<tr>
<th>Country/Area & River basin</th>
<th>Mexico</th>
<th>Other, please specify (Zacatecas watershed)</th>
</tr>
</thead>
</table>

Number of facilities exposed to water risk
1

% company-wide facilities this represents
Less than 1%

Production value for the metals & mining activities associated with these facilities
<Not Applicable>

% company’s annual electricity generation that could be affected by these facilities
<Not Applicable>

% company’s global oil & gas production volume that could be affected by these facilities
<Not Applicable>

% company’s total global revenue that could be affected
1-10

Comment
None

<table>
<thead>
<tr>
<th>Country/Area & River basin</th>
<th>United States of America</th>
<th>Alabama River & Tombigbee</th>
</tr>
</thead>
</table>

Number of facilities exposed to water risk
1

% company-wide facilities this represents
Less than 1%

Production value for the metals & mining activities associated with these facilities
<Not Applicable>

% company’s annual electricity generation that could be affected by these facilities
<Not Applicable>

% company’s global oil & gas production volume that could be affected by these facilities
<Not Applicable>

% company’s total global revenue that could be affected
1-10

Comment
None
United States of America

<table>
<thead>
<tr>
<th>Other, please specify (Los Angeles watershed)</th>
</tr>
</thead>
</table>

Number of facilities exposed to water risk
1

% company-wide facilities this represents
Less than 1%

Production value for the metals & mining activities associated with these facilities
<Not Applicable>

% company’s annual electricity generation that could be affected by these facilities
<Not Applicable>

% company’s global oil & gas production volume that could be affected by these facilities
<Not Applicable>

% company’s total global revenue that could be affected
1-10

Comment
None

W4.2
Provide details of identified risks in your direct operations with the potential to have a substantive financial or strategic impact on your business, and your response to those risks.

Country/Area & River basin

<table>
<thead>
<tr>
<th>Colombia & Magdalena</th>
</tr>
</thead>
</table>

Type of risk & Primary risk driver

<table>
<thead>
<tr>
<th>Physical</th>
<th>Declining water quality</th>
</tr>
</thead>
</table>

Primary potential impact
Constraint to growth

Company-specific description

The water risk was identified through AB InBev specific water risk tool. The findings included seasonable droughts which impact availability to our breweries and also quality concerns which increases our treatment costs and slow down production processes. The primary source of water for the city of Bucaramanga, Colombia—and our brewery there—is the Surata River, which originates in the Santurban High Andean Wetland. This fragile ecosystem is being affected by agricultural practices, formal and informal mining, deforestation and rising global temperatures, resulting in water availability and quality challenges. We have engaged in two water funds to help address the water quality and availability issues facing the region. We are a founding partner of the Alianza BioCuenca, the water fund for Norte de Santander, where 70% of the Santurban High Andean Wetland is located. The Alianza BioCuenca is the operator of the MiParamo watershed protection project, which is focused on forest conservation, ecosystem restoration, environmental technical training in communities, sustainable agricultural practices and watershed monitoring. In addition, in partnership with TNC and local partners, we are helping create the Bucaramanga water fund, covering 30% of the Santurban High Andean Wetland. The fund is focused on improving watershed system monitoring and data collection, reducing pollutants from mining activity, and reducing impacts from ranching and agricultural activity. Water scarcity or poor water quality may affect AB InBev by increasing production costs and capacity constraints, which could adversely affect AB InBev's business and results of operations. AB InBev's operations are subject to environmental regulations, which could expose it to significant compliance costs and litigation relating to environmental issues.

Timeframe
More than 6 years

Magnitude of potential impact
Medium

Likelihood
Unlikely

Are you able to provide a potential financial impact figure?
Yes, a single figure estimate

Potential financial impact figure (currency)
3150000

Potential financial impact figure - minimum (currency)
<Not Applicable>

Potential financial impact figure - maximum (currency)
<Not Applicable>

Explanation of financial impact

Although difficult to quantify, the potential impact could result in up to 3,150,000 USD per annum of increased water treatment costs. This was calculated by utilizing internal company methodologies and data provided by our Voyager Plant Optimization (VPO) data management system. In addition, it is potentially possible to suffer production losses of 3 Million USD in extreme situations.

Primary response to risk
Other, please specify (Engagement with other stakeholders in the river basin)

Description of response

In 2019 we implemented innovative technology and process improvements to reduce our per hl water use to 2.80 hl.hl. A clear example of how innovation is improving our operational processes is through a pilot we implemented at our Bucaramanga brewery in Colombia with EcoWorld Technologies (EWTech), one of our 100+ Accelerator startups. EWTech offers a green replacement for caustic soda used in the industrial cleaning process. In the pilot test in Bucaramanga, it showed a 70% reduction in water usage versus traditional disinfecting chemicals and 60% reduction in cleaning cycle time, resulting in savings on energy consumption and freeing up time on the bottling lines. We are now rolling out the technology to 16 of our breweries across Colombia, Peru, Mexico, Honduras and El Salvador.

Cost of response
800000

Explanation of cost of response

The cost of response strategy was determined based on the cost of the current initiatives we have in place. These are focused on reducing our water use and engaging local stakeholders to effect change in the region. The cost is based on scientific analysis, reforestation, implementing fencing solutions to keep livestock from riparian areas and project management.
(W4.2a) Provide details of risks identified within your value chain (beyond direct operations) with the potential to have a substantive financial or strategic impact on your business, and your response to those risks.

Country/Area & River basin

| Mexico | Other, please specify (Guadalajara, Torreon, Zacatecas) |

Stage of value chain

Supply chain

Type of risk & Primary risk driver

| Physical | Increased water stress |

Primary potential impact

Supply chain disruption

Company-specific description

For AB InBev, water is required for barley and other agricultural ingredient suppliers in Africa, which forms the basis of inputs to brewing beer. Disruption of supply could affect quality and crop yield as well as the full utilization such as the company owned Maltings plant in Caledon. Water scarcity or poor water quality may affect AB InBev by increasing production costs and capacity constraints, which could adversely affect AB InBev's business and results of operations. AB InBev's operations are subject to environmental regulations, which could expose it to significant compliance costs and litigation relating to environmental issues.

Timeframe

More than 6 years

Magnitude of potential impact

Medium-low

Likelihood

Unlikely

Are you able to provide a potential financial impact figure?

Yes, an estimated range

Potential financial impact figure (currency)

<Not Applicable>

Potential financial impact figure - minimum (currency)

1

Potential financial impact figure - maximum (currency)

150,000

Explanation of financial impact

Although difficult to quantify, the potential impact could result in up to annual 150,000 USD per annum of supply chain impacts. This is a projection of potential investment required from local farmers.

Primary response to risk

| Supplier engagement | Other, please specify (Supplier diversification) |

Description of response

More than 4,500 growers throughout the globe have participated in SmartBarley. The information helps our local teams identify the most pressing challenges facing our growers, helping direct our portfolio of initiatives to address those challenges that most influence grower productivity, resource use efficiency and profitability. This includes water-related indicators such as irrigation water productivity, nitrogen use efficiency and soil health parameters are available through the iPad-based tool. In Mexico, we’ve gone from sourcing 70% of barley locally in 2014 and we’re on track to achieve 100% local sourcing. To achieve this, we built up an agriculture team of 20 agronomists and four researchers to directly support farmers to produce malting quality barley. This included creating Conecta Modelo, a pilot project with 150 farmers that used mobile devices to send climate, market and technical information from the SmartBarley program to barley growers to help increase productivity.

Cost of response

75,000

Explanation of cost of response

As a fraction of overall spend on the SmartBarley program we estimate a cost of response of $75,000 USD. This is the part of the overall SmartBarley program where technology was developed and deployed for hand held devices to be used by ABI agronomists to gather data at farm level.

(W4.3) Have you identified any water-related opportunities with the potential to have a substantive financial or strategic impact on your business?

Yes, we have identified opportunities, and some/all are being realized

(W4.3a) Provide details of opportunities currently being realized that could have a substantive financial or strategic impact on your business.

Type of opportunity

Efficiency
Primary water-related opportunity
Cost savings

Company-specific description & strategy to realize opportunity
This opportunity is strategic to ABI as it is designed to improve the cost effectiveness of operational processes, use technology in new and innovative ways, and rethink business strategy to increase water efficiency in direct operations and take advantage of improved brand value. We are implementing this strategy through our management system and extensive partnership projects. As an example of results, our efforts to achieve our water use goal resulted in savings of nearly 50 million USD over the past 5 years. In addition, we have reduced global water usage to a leading-edge 2.80 hectoliter of water per hectoliter of production - this represents an 21% reduction. At the heart of these efforts is the Voyager Plant Optimization (VPO) global management system that helps employees manage risks as well as find efficiency opportunities. The VPO tool identified water savings achieved by sites in South America through effluent reuse in cooling towers, and these measures then rolled out in Middle Americas, resulting in water savings. VPO also enables the sharing of good practices throughout the company. In Idaho, we partnered with local stakeholders to develop and promote an irrigation scheduler program called AgriMet, with positive results showing a 9% to 20% reduction in water use for participants. The program links local climate station data to a Web and mobile application that enables growers to optimize their use of irrigation water.

Estimated timeframe for realization
Current - up to 1 year

Magnitude of potential financial impact
Medium

Are you able to provide a potential financial impact figure?
Yes, a single figure estimate

Potential financial impact figure (currency)
10000000

Potential financial impact figure – minimum (currency)
<Not Applicable>

Potential financial impact figure – maximum (currency)
<Not Applicable>

Explanation of financial impact
Our efforts to achieve our water use goal resulted in savings of nearly 50 million USD over the past 5 years. This was about $10,000,000 in 2019. The $10 million potential financial impact figure is based on the comparison of the projected total cost of water use without any savings implemented and then compared with actual spent on water in total brewing.

Type of opportunity
Resilience

Primary water-related opportunity
Increased supply chain resilience

Company-specific description & strategy to realize opportunity
This opportunity is strategic to ABI as demonstrating water stewardship can improve brand value and community relations whilst boosting the resilience of our supply chain. We have also committed to helping our independent barley growers improve their water productivity and are working with governments, communities and NGOs on watershed protection measures in key areas around the world. For example, in South Africa, a water- stressed country ranked as the 30th driest in the world, recent droughts have placed agriculture under even more pressure. We play a leading role in the Strategic Water Partners Network (SWPN), through which government and the private sector are working together to address pressing water challenges in South Africa. We’ve supported important projects such as the Vaalharts Irrigation Scheme, to select the best data logger and internet platform for optimal data tracking and management and have subsequently supported the roll out of the system across multiple irrigation sites. This has helped save water and supported farmers to make informed decisions on crop management based on water availability.

Estimated timeframe for realization
4 to 6 years

Magnitude of potential financial impact
Low-medium

Are you able to provide a potential financial impact figure?
Yes, a single figure estimate

Potential financial impact figure (currency)
1000000

Potential financial impact figure – minimum (currency)
<Not Applicable>

Potential financial impact figure – maximum (currency)
<Not Applicable>

Explanation of financial impact
While difficult to quantify the benefits from mitigating the impact of a watershed event, we estimate it could approach 1,000,000 USD. This impact figure would include the cost of shifting sourcing of barley to a different area, impact on malting efficiency, transport costs and disruption to production- leading to sales disruption.

Type of opportunity
Markets

Primary water-related opportunity
Increased brand value

Company-specific description & strategy to realize opportunity
This opportunity is strategic to ABI as raising awareness of the global water crisis through consumer engagement will directly impact brand value through consumer perceptions of the brand into the future. To do so, our global brand, Stella Artois, runs a campaign called “Buy A Lady A Drink” together with the NGO water.org to help raise awareness of the global water crisis and allow consumers to contribute to the cause. We created limited-edition Stella Artois chalices, designed by developing-world artists, and the proceeds go to Water.org, which will help Water.org provide five years’ access to safe water for one person in the developing world. Apart from the very positive impact on people’s lives, the results of the campaign delivered tangible brand value as our core portfolio gained 90 bps of total share and we aim to deliver against our public target of providing water to 3.5 million people.
Estimated timeframe for realization
1 to 3 years

Magnitude of potential financial impact
Medium-high

Are you able to provide a potential financial impact figure?
Yes, an estimated range

Potential financial impact figure (currency)
<Not Applicable>

Potential financial impact figure – minimum (currency)
1

Potential financial impact figure – maximum (currency)
10000000

Explanation of financial impact
Although difficult to quantify, ABI has 18 brands which each grossed over one billion USD in revenue in 2019. If sales for one of these brands such as Budweiser, Corona, or Stella Artois increased by just 1% as a result of increased brand value, ABI could realize 10 million USD in additional revenue. For example, our core portfolio gained 90 bps of total share, due to strong performances from Michelob Ultra, Michelob Ultra Pure Gold, our regional craft portfolio and our innovation pipeline. Michelob Ultra has integrated its sustainability credentials into the brand and continues to grow by double-digits and is now the second largest brand in the country by retail sales. Michelob Ultra Pure Gold grew by triple-digits, while our craft portfolio grew by more than 20%, gaining share within the craft segment.

W5. Facility-level water accounting

W5.1

(W5.1) For each facility referenced in W4.1c, provide coordinates, water accounting data, and a comparison with the previous reporting year.

Facility reference number
Facility 1

Facility name (optional)
Maputo

Country/Area & River basin

<table>
<thead>
<tr>
<th>Country/Area & River basin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mozambique</td>
</tr>
</tbody>
</table>

Latitude
-25.966

Longitude
32.582

Located in area with water stress
Yes

Primary power generation source for your electricity generation at this facility
<Not Applicable>

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
555.99

Comparison of total withdrawals with previous reporting year
Lower

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
0

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
555.99

Total water discharges at this facility (megaliters/year)
416.42
Comparison of total discharges with previous reporting year
Higher
Discharges to fresh surface water
0
Discharges to brackish surface water/seawater
0
Discharges to groundwater
0
Discharges to third party destinations
416.42

Total water consumption at this facility (megaliters/year)
139.57

Comparison of total consumption with previous reporting year
Lower

Please explain
The coordinates of each facility represent one facility and are not an aggregate of multiple locations.

Facility reference number
Facility 2

Facility name (optional)
Nampula

Country/Area & River basin
| Mozambique | Other, please specify (Nampula watershed) |

Latitude
-15.117

Longitude
39.266

Located in area with water stress
Yes

Primary power generation source for your electricity generation at this facility
<Not Applicable>

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
226.02

Comparison of total withdrawals with previous reporting year
About the same
Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0
Withdrawals from brackish surface water/seawater
0
Withdrawals from groundwater - renewable
0
Withdrawals from groundwater - non-renewable
0
Withdrawals from produced/entrained water
0
Withdrawals from third party sources
226.02

Total water discharges at this facility (megaliters/year)
154.2

Comparison of total discharges with previous reporting year
Lower
Discharges to fresh surface water
0
Discharges to brackish surface water/seawater
0
Discharges to groundwater
0
Discharges to third party destinations
154.2
Total water consumption at this facility (megaliters/year)
71.82

Comparison of total consumption with previous reporting year
Higher

Please explain
The coordinates of each facility represent one facility and are not an aggregate of multiple locations

Facility reference number
Facility 3

Facility name (optional)
Namibia

Country/Area & River basin

<table>
<thead>
<tr>
<th>Namibia</th>
<th>Other, please specify (Namibia watershed)</th>
</tr>
</thead>
</table>

Latitude
21.9675

Longitude
16.8975

Located in area with water stress
Yes

Primary power generation source for your electricity generation at this facility
<Not Applicable>

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
80.14

Comparison of total withdrawals with previous reporting year
Higher

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
33.61

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
46.52

Total water discharges at this facility (megaliters/year)
55.48

Comparison of total discharges with previous reporting year
About the same

Discharges to fresh surface water
0

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
55.48

Total water consumption at this facility (megaliters/year)
24.66

Comparison of total consumption with previous reporting year
About the same

Please explain
The coordinates of each facility represent one facility and are not an aggregate of multiple locations

Facility reference number
Facility 4
Facility name (optional)
Ibhayi

Country/Area & River basin
South Africa Other, please specify (Ibhayi watershed)

Latitude
-33.9395

Longitude
25.571

Located in area with water stress
Yes

Primary power generation source for your electricity generation at this facility
<Not Applicable>

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
565.76

Comparison of total withdrawals with previous reporting year
Higher

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
0

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
565.76

Total water discharges at this facility (megaliters/year)
395.05

Comparison of total discharges with previous reporting year
Higher

Discharges to fresh surface water
0

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
395.05

Total water consumption at this facility (megaliters/year)
170.72

Comparison of total consumption with previous reporting year
Lower

Please explain
The coordinates of each facility represent one facility and are not an aggregate of multiple locations

Facility reference number
Facility 5

Facility name (optional)
Newlands

Country/Area & River basin
South Africa Other, please specify (Newlands)

Latitude
-33.9792

Longitude
18.45
Located in area with water stress
Yes

Primary power generation source for your electricity generation at this facility
<Not Applicable>

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
1023.87

Comparison of total withdrawals with previous reporting year
Higher

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
411.58

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
599.34

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
12.95

Total water discharges at this facility (megaliters/year)
656.18

Comparison of total discharges with previous reporting year
Higher

Discharges to fresh surface water
0

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
656.18

Total water consumption at this facility (megaliters/year)
367.69

Comparison of total consumption with previous reporting year
Lower

Please explain
The coordinates of each facility represent one facility and are not an aggregate of multiple locations

Facility reference number
Facility 6

Facility name (optional)
Dar es Salaam

Country/Area & River basin
United Republic of Tanzania
Other, please specify (Dar es Salaam watershed)

Latitude
-6.829

Longitude
39.271

Located in area with water stress
Yes

Primary power generation source for your electricity generation at this facility
<Not Applicable>

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
483.67

Comparison of total withdrawals with previous reporting year
Lower
Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0
Withdrawals from brackish surface water/seawater
0
Withdrawals from groundwater - renewable
290.98
Withdrawals from groundwater - non-renewable
0
Withdrawals from produced/entrained water
0
Withdrawals from third party sources
192.69
Total water discharges at this facility (megaliters/year)
363.78
Comparison of total discharges with previous reporting year
Higher
Discharges to fresh surface water
0
Discharges to brackish surface water/seawater
0
Discharges to groundwater
0
Discharges to third party destinations
363.78
Total water consumption at this facility (megaliters/year)
119.89
Comparison of total consumption with previous reporting year
Lower
Please explain
The coordinates of each facility represent one facility and are not an aggregate of multiple locations

Facility reference number
Facility 7
Facility name (optional)
Mbarara
Country/Area & River basin
Uganda
Latitude
-0.6133
Longitude
30.6583
Located in area with water stress
Yes
Primary power generation source for your electricity generation at this facility
<Not Applicable>
Oil & gas sector business division
<Not Applicable>
Total water withdrawals at this facility (megaliters/year)
251.84
Comparison of total withdrawals with previous reporting year
Higher
Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
31.38
Withdrawals from brackish surface water/seawater
0
Withdrawals from groundwater - renewable
6.86
Withdrawals from groundwater - non-renewable
0
Withdrawals from produced/entrained water

CDP
Withdrawals from third party sources
213.6

Total water discharges at this facility (megaliters/year)
163.93

Comparison of total discharges with previous reporting year
Higher

Discharges to fresh surface water
0

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
163.93

Total water consumption at this facility (megaliters/year)
87.91

Comparison of total consumption with previous reporting year
Lower

Please explain
The coordinates of each facility represent one facility and are not an aggregate of multiple locations

Facility reference number
Facility 8

Facility name (optional)
Lusaka

Country/Area & River basin
Zambia Zambezi

Latitude
-15.411

Longitude
28.286

Located in area with water stress
Yes

Primary power generation source for your electricity generation at this facility
<Not Applicable>

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
313.08

Comparison of total withdrawals with previous reporting year
Lower

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
274.53

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
38.55

Total water discharges at this facility (megaliters/year)
238.5

Comparison of total discharges with previous reporting year
Lower

Discharges to fresh surface water
0
Discharges to brackish surface water/seawater
0
Discharges to groundwater
0
Discharges to third party destinations
238.5
Total water consumption at this facility (megaliters/year)
74.58
Comparison of total consumption with previous reporting year
About the same

Please explain
The coordinates of each facility represent one facility and are not an aggregate of multiple locations

Facility reference number
Facility 9
Facility name (optional)
Jinshibai
Country/Area & River basin
China
Other, please specify (Jinshibai watershed)

Latitude
43.1664
Longitude
124.3504
Located in area with water stress
Yes
Primary power generation source for your electricity generation at this facility
<Not Applicable>
Oil & gas sector business division
<Not Applicable>
Total water withdrawals at this facility (megaliters/year)
1061.17
Comparison of total withdrawals with previous reporting year
About the same
Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
258.62
Withdrawals from brackish surface water/seawater
0
Withdrawals from groundwater - renewable
802.54
Withdrawals from groundwater - non-renewable
0
Withdrawals from produced/entrained water
0
Withdrawals from third party sources
0
Total water discharges at this facility (megaliters/year)
652.99
Comparison of total discharges with previous reporting year
Lower
Discharges to fresh surface water
0
Discharges to brackish surface water/seawater
0
Discharges to groundwater
0
Discharges to third party destinations
652.99
Total water consumption at this facility (megaliters/year)
408.17
Comparison of total consumption with previous reporting year
Much higher
Facility reference number
Facility 10
Facility name (optional)
Aurangabad
Country/Area & River basin

<table>
<thead>
<tr>
<th>Country/Area & River basin</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>India</td>
<td>Other, please specify (Aurangabad watershed)</td>
</tr>
</tbody>
</table>

Latitude
19.8399
Longitude
75.2362
Located in area with water stress
Yes
Primary power generation source for your electricity generation at this facility
<Not Applicable>
Oil & gas sector business division
<Not Applicable>
Total water withdrawals at this facility (megaliters/year)
104.55
Comparison of total withdrawals with previous reporting year
Higher
Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0
Withdrawals from brackish surface water/seawater
0
Withdrawals from groundwater - renewable
0
Withdrawals from groundwater - non-renewable
0
Withdrawals from produced/entrained water
0
Withdrawals from third party sources
104.55
Total water discharges at this facility (megaliters/year)
71.28
Comparison of total discharges with previous reporting year
Higher
Discharges to fresh surface water
0
Discharges to brackish surface water/seawater
0
Discharges to groundwater
0
Discharges to third party destinations
71.28
Total water consumption at this facility (megaliters/year)
33.27
Comparison of total consumption with previous reporting year
Lower

Facility reference number
Facility 11
Facility name (optional)
Charminar
Country/Area & River basin

<table>
<thead>
<tr>
<th>Country/Area & River basin</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>India</td>
<td>Godavari</td>
</tr>
</tbody>
</table>

Please explain
The coordinates of each facility represent one facility and are not an aggregate of multiple locations
Located in area with water stress
Yes

Primary power generation source for your electricity generation at this facility
<Not Applicable>

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
397.37

Comparison of total withdrawals with previous reporting year
Higher

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
42.46

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
190.92

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
164

Total water discharges at this facility (megaliters/year)
266.41

Comparison of total discharges with previous reporting year
Higher

Discharges to fresh surface water
0

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
266.41

Total water consumption at this facility (megaliters/year)
130.96

Comparison of total consumption with previous reporting year
About the same

Please explain
The coordinates of each facility represent one facility and are not an aggregate of multiple locations

Facility reference number
Facility 12

Facility name (optional)
Hyderabad

Country/Area & River basin

<table>
<thead>
<tr>
<th>Country</th>
<th>Area</th>
<th>River basin</th>
</tr>
</thead>
<tbody>
<tr>
<td>India</td>
<td></td>
<td>Krishna</td>
</tr>
</tbody>
</table>

Latitude
17.385

Longitude
78.4867

Located in area with water stress
Yes

Primary power generation source for your electricity generation at this facility
<Not Applicable>

Oil & gas sector business division
<Not Applicable>
Total water withdrawals at this facility (megaliters/year) 203.84
Comparison of total withdrawals with previous reporting year
Higher
Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes 0
Withdrawals from brackish surface water/seawater 0
Withdrawals from groundwater - renewable 1.41
Withdrawals from groundwater - non-renewable 0
Withdrawals from produced/entrained water 0
Withdrawals from third party sources 202.43
Total water discharges at this facility (megaliters/year) 153.9
Comparison of total discharges with previous reporting year
Higher
Discharges to fresh surface water 0
Discharges to brackish surface water/seawater 0
Discharges to groundwater 0
Discharges to third party destinations 153.9
Total water consumption at this facility (megaliters/year) 49.93
Comparison of total consumption with previous reporting year
Much lower
Please explain
The coordinates of each facility represent one facility and are not an aggregate of multiple locations

Facility reference number
Facility 13
Facility name (optional)
Neemrana
Country/Area & River basin
India Other, please specify (Neemrana watershed)
Latitude 27.975009
Longitude 76.389634
Located in area with water stress Yes
Primary power generation source for your electricity generation at this facility
<Not Applicable>
Oil & gas sector business division
<Not Applicable>
Total water withdrawals at this facility (megaliters/year) 132.31
Comparison of total withdrawals with previous reporting year
Lower
Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes 0
Withdrawals from brackish surface water/seawater 0
Withdrawals from groundwater - renewable
Withdrawals from groundwater - non-renewable
0
Withdrawals from produced/entrained water
0
Withdrawals from third party sources
0.6
Total water discharges at this facility (megaliters/year)
93.01
Comparison of total discharges with previous reporting year
Lower
Discharges to fresh surface water
0
Discharges to brackish surface water/seawater
0
Discharges to groundwater
0
Discharges to third party destinations
93.01
Total water consumption at this facility (megaliters/year)
39.3
Comparison of total consumption with previous reporting year
Much lower

Please explain
The coordinates of each facility represent one facility and are not an aggregate of multiple locations

Facility reference number
Facility 14

Facility name (optional)
Bucaramanga

Country/Area & River basin

<table>
<thead>
<tr>
<th>Colombia</th>
<th>Magdalena</th>
</tr>
</thead>
</table>

Latitude
7.111
Longitude
-73.12

Located in area with water stress
Yes

Primary power generation source for your electricity generation at this facility
<Not Applicable>

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
622.1
Comparison of total withdrawals with previous reporting year
Higher

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
622.1
Withdrawals from brackish surface water/seawater
0
Withdrawals from groundwater - renewable
0
Withdrawals from groundwater - non-renewable
0
Withdrawals from produced/entrained water
0
Withdrawals from third party sources
0
Total water discharges at this facility (megaliters/year)
402.83
Comparison of total discharges with previous reporting year
Higher

Discharges to fresh surface water
0

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
402.83

Total water consumption at this facility (megaliters/year)
219.28

Comparison of total consumption with previous reporting year
Lower

Please explain
The coordinates of each facility represent one facility and are not an aggregate of multiple locations

<table>
<thead>
<tr>
<th>Facility reference number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facility 15</td>
</tr>
<tr>
<td>Facility name (optional)</td>
</tr>
<tr>
<td>Ate</td>
</tr>
<tr>
<td>Country/Area & River basin</td>
</tr>
<tr>
<td>Peru Other, please specify (Ate watershed)</td>
</tr>
</tbody>
</table>

Latitude
-12.0231

Longitude
-76.8614

Located in area with water stress
Yes

Primary power generation source for your electricity generation at this facility
<Not Applicable>

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
1930.48

Comparison of total withdrawals with previous reporting year
Lower

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
1930.48

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
0

Total water discharges at this facility (megaliters/year)
1157.19

Comparison of total discharges with previous reporting year
Lower

Discharges to fresh surface water
0

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
1157.19
Total water consumption at this facility (megaliters/year)
773.28

Comparison of total consumption with previous reporting year
Lower

Please explain
The coordinates of each facility represent one facility and are not an aggregate of multiple locations

Facility reference number
Facility 16

Facility name (optional)
Motupe

Country/Area & River basin
Peru

Latitude
-6.1545

Longitude
-79.7114

Located in area with water stress
Yes

Primary power generation source for your electricity generation at this facility
<Not Applicable>

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
756.26

Comparison of total withdrawals with previous reporting year
Lower

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
756.26

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
0

Total water discharges at this facility (megaliters/year)
476.53

Comparison of total discharges with previous reporting year
Higher

Discharges to fresh surface water
0

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
476.53

Total water consumption at this facility (megaliters/year)
279.73

Comparison of total consumption with previous reporting year
Lower

Please explain
The coordinates of each facility represent one facility and are not an aggregate of multiple locations

Facility reference number
Facility 17
Facility name (optional)
Anapolis

Country/Area & River basin

<table>
<thead>
<tr>
<th>Brazil</th>
<th>Tocantins</th>
</tr>
</thead>
</table>

Latitude
-16.3333

Longitude
-48.9667

Located in area with water stress
Yes

Primary power generation source for your electricity generation at this facility
<Not Applicable>

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
1270.37

Comparison of total withdrawals with previous reporting year
Lower

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
771.66

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
498.7

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
0

Total water discharges at this facility (megaliters/year)
707.24

Comparison of total discharges with previous reporting year
Lower

Discharges to fresh surface water
0

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
707.24

Total water consumption at this facility (megaliters/year)
563.12

Comparison of total consumption with previous reporting year
Higher

Please explain
The coordinates of each facility represent one facility and are not an aggregate of multiple locations

Facility reference number
Facility 18

Facility name (optional)
Aquiraz

Country/Area & River basin

<table>
<thead>
<tr>
<th>Brazil</th>
<th>Other, please specify (Aquiraz watershed)</th>
</tr>
</thead>
</table>

Latitude
-3.9

Longitude
-38.3667
Located in area with water stress
Yes

Primary power generation source for your electricity generation at this facility
<Not Applicable>

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
829.74

Comparison of total withdrawals with previous reporting year
Higher

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
2.27

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
0

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
827.47

Total water discharges at this facility (megaliters/year)
435.41

Comparison of total discharges with previous reporting year
Higher

Discharges to fresh surface water
0

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
435.41

Total water consumption at this facility (megaliters/year)
394.34

Comparison of total consumption with previous reporting year
Higher

Please explain
The coordinates of each facility represent one facility and are not an aggregate of multiple locations

Facility reference number
Facility 19

Facility name (optional)
Jacarei

Country/Area & River basin
Brazil Paraiba Do Sul

Latitude
-23.3167

Longitude
-45.9667

Located in area with water stress
Yes

Primary power generation source for your electricity generation at this facility
<Not Applicable>

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
2412.59

Comparison of total withdrawals with previous reporting year
Lower
Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
2412.59
Withdrawals from brackish surface water/seawater
0
Withdrawals from groundwater - renewable
0
Withdrawals from groundwater - non-renewable
0
Withdrawals from produced/entrained water
0
Withdrawals from third party sources
0
Total water discharges at this facility (megaliters/year)
1790.91
Comparison of total discharges with previous reporting year
Lower
Discharges to fresh surface water
0
Discharges to brackish surface water/seawater
0
Discharges to groundwater
0
Discharges to third party destinations
1790.91
Total water consumption at this facility (megaliters/year)
621.67
Comparison of total consumption with previous reporting year
About the same
Please explain
The coordinates of each facility represent one facility and are not an aggregate of multiple locations

Facility reference number
Facility 20
Facility name (optional)
Jaguaruna
Country/Area & River basin
Brazil
Parana
Latitude
-22.6833
Longitude
-46.9833
Located in area with water stress
Yes
Primary power generation source for your electricity generation at this facility
<Not Applicable>
Oil & gas sector business division
<Not Applicable>
Total water withdrawals at this facility (megaliters/year)
1255.55
Comparison of total withdrawals with previous reporting year
Higher
Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
1255.55
Withdrawals from brackish surface water/seawater
0
Withdrawals from groundwater - renewable
0
Withdrawals from groundwater - non-renewable
0
Withdrawals from produced/entrained water
0
Withdrawals from third party sources
0

Total water discharges at this facility (megaliters/year)
583.99

Comparison of total discharges with previous reporting year
Lower

Discharges to fresh surface water
0

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
583.99

Total water consumption at this facility (megaliters/year)
671.56

Comparison of total consumption with previous reporting year
Higher

Please explain
The coordinates of each facility represent one facility and are not an aggregate of multiple locations

Facility reference number
Facility 21

Facility name (optional)
Jundiai

Country/Area & River basin

<table>
<thead>
<tr>
<th>Brazil</th>
<th>Parana</th>
</tr>
</thead>
</table>

Latitude
-23.1833

Longitude
-46.8667

Located in area with water stress
Yes

Primary power generation source for your electricity generation at this facility
<Not Applicable>

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
879.1

Comparison of total withdrawals with previous reporting year
Higher

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
0

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
879.1

Total water discharges at this facility (megaliters/year)
239.71

Comparison of total discharges with previous reporting year
Lower

Discharges to fresh surface water
0
Discharges to brackish surface water/seawater
0
Discharges to groundwater
0
Discharges to third party destinations
239.71
Total water consumption at this facility (megaliters/year)
639.39
Comparison of total consumption with previous reporting year
Much higher

Please explain
The coordinates of each facility represent one facility and are not an aggregate of multiple locations

<table>
<thead>
<tr>
<th>Facility reference number</th>
<th>Facility 22</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facility name (optional)</td>
<td>Rio de Janeiro</td>
</tr>
<tr>
<td>Country/Area & River basin</td>
<td>Brazil, Other, please specify (Rio de Janeiro watershed)</td>
</tr>
</tbody>
</table>

Latitude
-22.9016
Longitude
-43.2107
Located in area with water stress
Yes
Primary power generation source for your electricity generation at this facility
<Not Applicable>
Oil & gas sector business division
<Not Applicable>
Total water withdrawals at this facility (megaliters/year)
3367.09
Comparison of total withdrawals with previous reporting year
Much higher
Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
3367.09
Withdrawals from brackish surface water/seawater
0
Withdrawals from groundwater - renewable
0
Withdrawals from groundwater - non-renewable
0
Withdrawals from produced/entained water
0
Withdrawals from third party sources
0
Total water discharges at this facility (megaliters/year)
2195.53
Comparison of total discharges with previous reporting year
Higher
Discharges to fresh surface water
0
Discharges to brackish surface water/seawater
0
Discharges to groundwater
0
Discharges to third party destinations
2195.53
Total water consumption at this facility (megaliters/year)
1171.55
Comparison of total consumption with previous reporting year
Higher
Facility reference number
Facility 23

Facility name (optional)
Sete Lagoas

Country/Area & River basin

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Brazil</td>
<td>Sao Francisco</td>
</tr>
</tbody>
</table>

Latitude
-19.9194

Longitude
-43.9383

Located in area with water stress
Yes

Primary power generation source for your electricity generation at this facility
<Not Applicable>

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
1130.15

Comparison of total withdrawals with previous reporting year
Much lower

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
223.88

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
906.27

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
0

Total water discharges at this facility (megaliters/year)
208.04

Comparison of total discharges with previous reporting year
Much lower

Discharges to fresh surface water
0

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
208.04

Total water consumption at this facility (megaliters/year)
922.11

Comparison of total consumption with previous reporting year
Higher

Facility reference number
Facility 24

Facility name (optional)
Santo Domingo

Country/Area & River basin

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dominican Republic</td>
<td>Other, please specify (Santo Domingo watershed)</td>
</tr>
</tbody>
</table>
Latitude
18.449444
Longitude
69.930277
Located in area with water stress
Yes
Primary power generation source for your electricity generation at this facility
<Not Applicable>
Oil & gas sector business division
<Not Applicable>
Total water withdrawals at this facility (megaliters/year)
1698.76
Comparison of total withdrawals with previous reporting year
Higher
Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0
Withdrawals from brackish surface water/seawater
0
Withdrawals from groundwater - renewable
1698.76
Withdrawals from groundwater - non-renewable
0
Withdrawals from produced/entrained water
0
Withdrawals from third party sources
0
Total water discharges at this facility (megaliters/year)
1281.18
Comparison of total discharges with previous reporting year
Much higher
Discharges to fresh surface water
0
Discharges to brackish surface water/seawater
0
Discharges to groundwater
0
Discharges to third party destinations
1281.18
Total water consumption at this facility (megaliters/year)
417.58
Comparison of total consumption with previous reporting year
Much lower
Please explain
The coordinates of each facility represent one facility and are not an aggregate of multiple locations.

Facility reference number
Facility 25
Facility name (optional)
Mendoza
Country/Area & River basin

<table>
<thead>
<tr>
<th>Argentina</th>
<th>Colorados (Argentina)</th>
</tr>
</thead>
</table>

Latitude
-32.8833
Longitude
-68.8167
Located in area with water stress
Yes
Primary power generation source for your electricity generation at this facility
<Not Applicable>
Oil & gas sector business division
<Not Applicable>
Total water withdrawals at this facility (megaliters/year)
233.19

Comparison of total withdrawals with previous reporting year
Lower

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
233.19

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
0

Total water discharges at this facility (megaliters/year)
63.71

Comparison of total discharges with previous reporting year
Lower

Discharges to fresh surface water
0

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
63.71

Total water consumption at this facility (megaliters/year)
169.48

Comparison of total consumption with previous reporting year
Lower

The coordinates of each facility represent one facility and are not an aggregate of multiple locations

Facility reference number
Facility 26

Facility name (optional)
Taquiña

Country/Area & River basin
Bolivia (Plurinational State of) Amazonas

Latitude
-17.4135

Longitude
-66.1707

Located in area with water stress
Yes

Primary power generation source for your electricity generation at this facility
<Not Applicable>

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
91.23

Comparison of total withdrawals with previous reporting year
Lower

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
CDP
Withdrawals from groundwater - non-renewable
0
Withdrawals from produced/entrained water
0
Withdrawals from third party sources
0

Total water discharges at this facility (megaliters/year)
20.84
Comparison of total discharges with previous reporting year
Lower
Discharges to fresh surface water
0
Discharges to brackish surface water/seawater
0
Discharges to groundwater
0
Discharges to third party destinations
20.84

Total water consumption at this facility (megaliters/year)
70.39
Comparison of total consumption with previous reporting year
Lower

Please explain
The coordinates of each facility represent one facility and are not an aggregate of multiple locations

Facility reference number
Facility 27
Facility name (optional)
Huari

Country/Area & River basin

| Bolivia (Plurinational State of) | Amazonas |

Latitude
-16.552
Longitude
-68.1482
Located in area with water stress
Yes
Primary power generation source for your electricity generation at this facility
<Not Applicable>
Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
69.26
Comparison of total withdrawals with previous reporting year
Lower
Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0
Withdrawals from brackish surface water/seawater
0
Withdrawals from groundwater - renewable
69.26
Withdrawals from groundwater - non-renewable
0
Withdrawals from produced/entrained water
0
Withdrawals from third party sources
0

Total water discharges at this facility (megaliters/year)
20.39
Comparison of total discharges with previous reporting year
Higher

Discharges to fresh surface water
0

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
20.39

Total water consumption at this facility (megaliters/year)
48.87

Comparison of total consumption with previous reporting year
Lower

Please explain
The coordinates of each facility represent one facility and are not an aggregate of multiple locations

Facility reference number
Facility 28

Facility name (optional)
Sacaba

Country/Area & River basin
Bolivia (Plurinational State of) Amazonas

Latitude
-17.4

Longitude
-66.04

Located in area with water stress
Yes

Primary power generation source for your electricity generation at this facility
<Not Applicable>

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
60.44

Comparison of total withdrawals with previous reporting year
About the same

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
60.44

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
0

Total water discharges at this facility (megaliters/year)
14.77

Comparison of total discharges with previous reporting year
Higher

Discharges to fresh surface water
0

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
14.77
Total water consumption at this facility (megaliters/year)
45.67

Comparison of total consumption with previous reporting year
Lower

Please explain
The coordinates of each facility represent one facility and are not an aggregate of multiple locations

Facility reference number
Facility 29

Facility name (optional)
Ind La Constancia

Country/Area & River basin

El Salvador Lempa

Latitude
13.7484

Longitude
-89.1947

Located in area with water stress
Yes

Primary power generation source for your electricity generation at this facility
<Not Applicable>

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
1121.6

Comparison of total withdrawals with previous reporting year
Much higher

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
1121.6

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
0

Total water discharges at this facility (megaliters/year)
179.06

Comparison of total discharges with previous reporting year
Lower

Discharges to fresh surface water
0

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
179.06

Total water consumption at this facility (megaliters/year)
942.54

Comparison of total consumption with previous reporting year
Much higher

Please explain
The coordinates of each facility represent one facility and are not an aggregate of multiple locations

Facility reference number
Facility 30
Guadalajara

Country/Area & River basin

| Mexico | Other, please specify (Guadalajara watershed) |

Latitude

20.663333

Longitude

103.375277

Located in area with water stress

Yes

Primary power generation source for your electricity generation at this facility

<Not Applicable>

Oil & gas sector business division

<Not Applicable>

Total water withdrawals at this facility (megaliters/year)

1449.81

Comparison of total withdrawals with previous reporting year

Lower

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes

0

Withdrawals from brackish surface water/seawater

0

Withdrawals from groundwater - renewable

1449.81

Withdrawals from groundwater - non-renewable

0

Withdrawals from produced/entrained water

0

Withdrawals from third party sources

0

Total water discharges at this facility (megaliters/year)

963.99

Comparison of total discharges with previous reporting year

Higher

Discharges to fresh surface water

0

Discharges to brackish surface water/seawater

0

Discharges to groundwater

0

Discharges to third party destinations

963.99

Total water consumption at this facility (megaliters/year)

485.82

Comparison of total consumption with previous reporting year

Much lower

Please explain

The coordinates of each facility represent one facility and are not an aggregate of multiple locations.

Torreon

Country/Area & River basin

| Mexico | Other, please specify (Torreon watershed) |

Latitude

25.543888

Longitude

103.407222
Located in area with water stress
Yes

Primary power generation source for your electricity generation at this facility
<Not Applicable>

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
968.76

Comparison of total withdrawals with previous reporting year
Lower
Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0
Withdrawals from brackish surface water/seawater
0
Withdrawals from groundwater - renewable
968.76
Withdrawals from groundwater - non-renewable
0
Withdrawals from produced/entrained water
0
Withdrawals from third party sources
0
Total water discharges at this facility (megaliters/year)
654.67
Comparison of total discharges with previous reporting year
Higher
Discharges to fresh surface water
0
Discharges to brackish surface water/seawater
0
Discharges to groundwater
0
Discharges to third party destinations
654.67
Total water consumption at this facility (megaliters/year)
314.09
Comparison of total consumption with previous reporting year
Lower

Please explain
The coordinates of each facility represent one facility and are not an aggregate of multiple locations

Facility reference number
Facility 22

Facility name (optional)
Zacatecas

Country/Area & River basin
Mexico Other, please specify (Zacatecas watershed)

Latitude
22.9725

Longitude
102.7075

Located in area with water stress
Yes

Primary power generation source for your electricity generation at this facility
<Not Applicable>

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
5535.99

Comparison of total withdrawals with previous reporting year
Much lower
Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0
Withdrawals from brackish surface water/seawater
0
Withdrawals from groundwater - renewable
5535.99
Withdrawals from groundwater - non-renewable
0
Withdrawals from produced/entrained water
0
Withdrawals from third party sources
0
Total water discharges at this facility (megaliters/year)
3361.48
Comparison of total discharges with previous reporting year
Much higher
Discharges to fresh surface water
0
Discharges to brackish surface water/seawater
0
Discharges to groundwater
0
Discharges to third party destinations
3361.48
Total water consumption at this facility (megaliters/year)
2174.51
Comparison of total consumption with previous reporting year
Much lower
Please explain
The coordinates of each facility represent one facility and are not an aggregate of multiple locations

Facility reference number
Facility 33
Facility name (optional)
Fort Collins
Country/Area & River basin
United States of America | Alabama River & Tombigbee
Latitude
34.2688
Longitude
-84.806
Located in area with water stress
Yes
Primary power generation source for your electricity generation at this facility
<Not Applicable>
Oil & gas sector business division
<Not Applicable>
Total water withdrawals at this facility (megaliters/year)
1290.37
Comparison of total withdrawals with previous reporting year
Lower
Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0
Withdrawals from brackish surface water/seawater
0
Withdrawals from groundwater - renewable
0
Withdrawals from groundwater - non-renewable
0
Withdrawals from produced/entrained water
0
Withdrawals from third party sources
1290.37

Total water discharges at this facility (megaliters/year)
232.5

Comparison of total discharges with previous reporting year
Much lower

Discharges to fresh surface water
0

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
232.5

Total water consumption at this facility (megaliters/year)
1057.87

Comparison of total consumption with previous reporting year
Much higher

Please explain
The coordinates of each facility represent one facility and are not an aggregate of multiple locations

<table>
<thead>
<tr>
<th>Facility reference number</th>
<th>Facility name (optional)</th>
<th>Country/Area & River basin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facility 34</td>
<td>Los Angeles</td>
<td>United States of America</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Other, please specify (Los Angeles)</td>
</tr>
</tbody>
</table>

Latitude
34.2214

Longitude
-118.477

Located in area with water stress
Yes

Primary power generation source for your electricity generation at this facility
<Not Applicable>

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
2531.57

Comparison of total withdrawals with previous reporting year
Lower

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
0

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
2531.57

Total water discharges at this facility (megaliters/year)
1645.04

Comparison of total discharges with previous reporting year
Higher

Discharges to fresh surface water
0
Discharges to brackish surface water/seawater
0
Discharges to groundwater
0
Discharges to third party destinations
1645.04
Total water consumption at this facility (megaliters/year)
886.53
Comparison of total consumption with previous reporting year
Much lower

Please explain
The coordinates of each facility represent one facility and are not an aggregate of multiple locations

Facility reference number
Facility 26
Facility name (optional)
Polokwane Brewery
Country/Area & River basin
South Africa Incomati

Latitude
-23.9
Longitude
29.5
Located in area with water stress
Yes
Primary power generation source for your electricity generation at this facility
<Not Applicable>
Oil & gas sector business division
<Not Applicable>
Total water withdrawals at this facility (megaliters/year)
475.72
Comparison of total withdrawals with previous reporting year
This is our first year of measurement
Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0
Withdrawals from brackish surface water/seawater
0
Withdrawals from groundwater - renewable
0
Withdrawals from groundwater - non-renewable
0
Withdrawals from produced/entrained water
0
Withdrawals from third party sources
475.72
Total water discharges at this facility (megaliters/year)
326.65
Comparison of total discharges with previous reporting year
This is our first year of measurement
Discharges to fresh surface water
0
Discharges to brackish surface water/seawater
0
Discharges to groundwater
0
Discharges to third party destinations
326.65
Total water consumption at this facility (megaliters/year)
149.07
Comparison of total consumption with previous reporting year
This is our first year of measurement
Facility reference number
Facility 36

Facility name (optional)
Apan

Country/Area & River basin

<table>
<thead>
<tr>
<th>Mexico</th>
<th>Panuco</th>
</tr>
</thead>
</table>

Latitude
19.697461

Longitude
-98.539269

Located in area with water stress
Yes

Primary power generation source for your electricity generation at this facility
<Not Applicable>

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
1486.71

Comparison of total withdrawals with previous reporting year
This is our first year of measurement

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
1486.71

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
0

Total water discharges at this facility (megaliters/year)
1060.45

Comparison of total discharges with previous reporting year
This is our first year of measurement

Discharges to fresh surface water
0

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
1060.45

Total water consumption at this facility (megaliters/year)
426.26

Comparison of total consumption with previous reporting year
This is our first year of measurement

Please explain
The coordinates of each facility represent one facility and are not an aggregate of multiple locations

Facility reference number
Facility 37

Facility name (optional)
Sonipat

Country/Area & River basin

<table>
<thead>
<tr>
<th>India</th>
<th>Ganges - Brahmaputra</th>
</tr>
</thead>
</table>

Please explain
The coordinates of each facility represent one facility and are not an aggregate of multiple locations
Latitude 29
Longitude 77.1
Located in area with water stress
Yes
Primary power generation source for your electricity generation at this facility
<Not Applicable>
Oil & gas sector business division
<Not Applicable>
Total water withdrawals at this facility (meqaliters/year)
115.49
Comparison of total withdrawals with previous reporting year
This is our first year of measurement
Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0
Withdrawals from brackish surface water/seawater
0
Withdrawals from groundwater - renewable
115.44
Withdrawals from groundwater - non-renewable
0
Withdrawals from produced/entrained water
0
Withdrawals from third party sources
0.05
Total water discharges at this facility (meqaliters/year)
81.1
Comparison of total discharges with previous reporting year
This is our first year of measurement
Discharges to fresh surface water
0
Discharges to brackish surface water/seawater
0
Discharges to groundwater
0
Discharges to third party destinations
81.1
Total water consumption at this facility (meqaliters/year)
34.39
Comparison of total consumption with previous reporting year
This is our first year of measurement
Please explain
The coordinates of each facility represent one facility and are not an aggregate of multiple locations

W5.1a
(W5.1a) For the facilities referenced in W5.1, what proportion of water accounting data has been externally verified?

<table>
<thead>
<tr>
<th>Category</th>
<th>% verified</th>
<th>What standard and methodology was used?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water withdrawals – total volumes</td>
<td>76-100</td>
<td>ISAE3000; for beverage facilities.</td>
</tr>
<tr>
<td>Water withdrawals – volume by source</td>
<td>Not verified</td>
<td></td>
</tr>
<tr>
<td>Water withdrawals – quality</td>
<td>Not verified</td>
<td></td>
</tr>
<tr>
<td>Water discharges – total volumes</td>
<td>Not verified</td>
<td></td>
</tr>
<tr>
<td>Water discharges – volume by destination</td>
<td>Not verified</td>
<td></td>
</tr>
<tr>
<td>Water discharges – volume by treatment method</td>
<td>Not verified</td>
<td></td>
</tr>
<tr>
<td>Water discharge quality – quality by standard effluent parameters</td>
<td>Not verified</td>
<td></td>
</tr>
<tr>
<td>Water discharge quality – temperature</td>
<td>Not verified</td>
<td></td>
</tr>
<tr>
<td>Water consumption – total volume</td>
<td>Not verified</td>
<td></td>
</tr>
<tr>
<td>Water recycled/reused</td>
<td>Not verified</td>
<td></td>
</tr>
</tbody>
</table>

W6. Governance

W6.1
(W6.1a) Select the options that best describe the scope and content of your water policy.

<table>
<thead>
<tr>
<th>Scope</th>
<th>Context</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Company-wide</td>
<td>Description of business dependency on water</td>
<td>Water quality and availability are critical to brewing. “No water, No Beer!” summarizes the importance of water to brewing quality beers. It is possible to change the starch source or energy used for beer, but water remains the most important ingredient that cannot be changed; without water we have no business. Therefore, the importance of water is embedded throughout our company and is managed at the company-wide level. Water quality is also essential as good beer cannot be brewed with bad quality water. Similarly, if people around our operations do not have access to good quality water, we can expect a less than positive operating environment. We must also be responsible stewards of water supplies for the communities where we operate. We listen carefully to major water conservation organizations and combine their knowledge with our scale and expertise to help ensure a reliable, clean supply of water, not only for ourselves but also for local communities and watersheds. About 90% of the water used to produce our products goes into our agricultural ingredients. We encourage our buyers to take actions to address water concerns in key barley-growing regions to reduce water risk and improve water management. We set a goal and have been successful in reducing water risks and improving water management in 100% of our key barley-growing regions, in partnership with local stakeholders. Since 2017 we have been able to work together to reduce our total water usage by 9.39%. We are committed to stakeholder awareness and education and utilize multiple strategies to increase both such as our ongoing partnership with water.org. This year we were able to provide education through the “Change up the usual” campaign and together enabled clean water access for another half a million people in 2019. Through this partnership we also work through our Stella Artois’ brand to advocate the human right to water and sanitation through our public commitment to provide access to clean water in the developing world. Furthermore, we are committed to water-related innovation. For example, is the development of ‘Simmer & Strip’ technology that limits the amount of water and heat needed for the brewing process, which results in a reduction of water consumption. Lastly, we are committed to the UN SDGs of water stewardship as described in our 2025 goal of that 100% of our communities in high stress areas will have measurably improved water availability and quality.</td>
</tr>
<tr>
<td></td>
<td>Description of business impact on water</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Description of water-related performance standards for direct operations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Description of water-related standards for procurement</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reference to international standards and widely-recognized water initiatives</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Company water targets and goals</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Commitment to align with public policy initiatives, such as the SDGs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Commitment beyond regulatory compliance</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Commitment to water-related innovation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Commitment to stakeholder awareness and education</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Commitment to water stewardship and/or collective action</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acknowledgement of the human right to water and sanitation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Recognition of environmental linkages, for example, due to climate change</td>
<td></td>
</tr>
</tbody>
</table>

(W6.2) Is there board level oversight of water-related issues within your organization?

Yes

(W6.2a) Identify the position(s) (do not include any names) of the individual(s) on the board with responsibility for water-related issues.

<table>
<thead>
<tr>
<th>Position of individual</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Board-level committee</td>
<td>A Board-level committee, the Finance Committee of the Board of Directors, oversees the legal and regulatory affairs of the company and the environmental and social responsibilities of the company. The Committee oversees and approves the company’s Sustainability Goals and public commitments, including those related to water. The Finance Committee treats water as a standing item on its agenda and every meeting reviews the water risk map and response plans. An example of a water-related item made by the Finance Committee was to approve the strategy to explore the potential of a water positive impact for operations and to undertake detailed investigations into the irrigation component of the water footprint of barley in the supply chain, especially in high risk areas. The committee also approved continued global water partnerships with The Nature Conservancy (TNC) and the World Wildlife Fund for Nature (WWF). The Finance Committee tracks overall progress against the water goals. Our partnership with TNC will focus on developing Water Funds in Colombia, El Salvador, Argentina and Mexico, and watershed protection projects in the United States. Our partnership with WWF will focus in Bolivia, South Africa and Zambia to build on previous water risk assessments to highlight the value of water to the economy and encourage private sector investments to contribute to water access and quality improvements, river basin health, and local community needs. The board of directors as a whole is responsible for the identification of stakeholders and the definition of material matters which include water-related issues.</td>
</tr>
</tbody>
</table>
(W6.2b) Provide further details on the board’s oversight of water-related issues.

<table>
<thead>
<tr>
<th>Frequency that water-related issues are a scheduled agenda item</th>
<th>Governance mechanisms into which water-related issues are integrated</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1: Scheduled - some meetings</td>
<td>Monitoring implementation and performance</td>
<td>Review of water related risks are provided to Executive Board of Management on Quarterly basis, and more often if required by exceptional case. Twice a year an update on water risks is provided by the Sustainability and Supply executives to the Finance Committee of the Board. The Finance Committee requests a detailed update on water risk across the group, and progress with mitigation plans. The committee also reviews investments into watershed security. Where relevant the risks and progress are reported to the Audit Committee of the board, through the Chief Procurement and Sustainability Officer. Given the representation of senior board members on these committees, the board is fully informed of water risk and trends. Substantive progress on the Better World plan, which includes water-related issues, is provided at least twice a year to the full Board of Directors. The board also reviews major strategic and tactical plans that are tied to our sustainability goals, and linked water-related issues, and utilizes all applicable governance mechanisms when making decisions on these issues. Lastly, the board serves as an internal control to ensure publicly disclosed information related to all governance mechanisms are free from material misstatement, whether due to fraud or error.</td>
</tr>
</tbody>
</table>

(W6.3) Provide the highest management-level position(s) or committee(s) with responsibility for water-related issues (do not include the names of individuals).

Name of the position(s) and/or committee(s)
Chief Sustainability Officer (CSO)

Responsibility
Both assessing and managing water-related risks and opportunities

Frequency of reporting to the board on water-related issues
More frequently than quarterly

Please explain
Review of water related risks are provided quarterly to Executive Board of Management, and more often if required by the CSO. The CSO participates in the Finance Audit Committee of the board of directors which has the highest level of direct responsibility for water-related issues within AB InBev. It consists of main board members and is a formal sub-committee of the board. The water-related work, such as evaluating water risks and trends, is led daily by the Chief Sustainability Officer who oversees the Sustainability Council. The CSO reports directly to the AB InBev CEO. The Chief Sustainability Officer and the council monitors and reports progress towards the AB InBev 2025 Sustainability Goals (SGs) at least twice a year to the full Board of Directors; in 2019 the Council met 4 times. Progress towards goals is assessed through clear targets aligned with the 2025 SGs for each member that include key performance indicators (KPIs) related to achievements.

(W6.4) Do you provide incentives to C-suite employees or board members for the management of water-related issues?

<table>
<thead>
<tr>
<th>Provide incentives for management of water-related issues</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1: Yes</td>
<td></td>
</tr>
</tbody>
</table>

CDP
What incentives are provided to C-suite employees or board members for the management of water-related issues (do not include the names of individuals)?

<table>
<thead>
<tr>
<th>Role(s) entitled to incentive</th>
<th>Performance indicator</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monetary reward</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Board/Executive board</td>
<td>Reduction of water withdrawals</td>
<td>ABI has published two external goals on water management (including the reduction of product water intensity to a leading-edge 2.8 hectoliters of water per hectoliter of production) both of which are included in executive targets and related to financial rewards. Efficiency was chosen as target to ensure the company maximizes water use productivity especially in high risk areas—thus using less water and ensuring more water is available for others and the environment (Reduction in consumption volumes indicator). Watershed target was chosen to ensure long term sustainability of watersheds (Reduction of water withdrawals indicator). This indicator was chosen because meeting the efficiency target and protecting high risk watersheds are goals cascaded from CEO down in the organization to appropriate executives. The 2025 goals are broken down in annual milestones and evaluated on an annual basis. These goals comprise between 10-25% of the annual monetary incentives of the executives directly involved. Thresholds of Success: For efficiency, the indicator is the volume of water used/volume of beer produced. In different regions different targets are applied, but all cascade down from global baseline of 3 hl/hl by 2018. The company exceeded the incentive KPI of 2.8 hl/hl. For watersheds, executives must prove the percentage of sites that have completed Steps 1-3 on ABI Watershed model (target for 2019 was 100% and was achieved).</td>
</tr>
<tr>
<td>Director on board</td>
<td>Reduction in consumption volumes</td>
<td></td>
</tr>
<tr>
<td>Corporate executive team</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chief Executive Officer (CEO)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chief Purchasing Officer (CPO)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chief Sustainability Officer (CSO)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-monetary reward</td>
<td>No one is entitled to these incentives <Not Applicable></td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

Do you engage in activities that could either directly or indirectly influence public policy on water through any of the following?
Yes, direct engagement with policy makers
Yes, trade associations
Yes, other

What processes do you have in place to ensure that all of your direct and indirect activities seeking to influence policy are consistent with your water policy/water commitments?
Our Sustainability Goals, which include our water commitments, are approved by our Global Audit Committee, and its implementation is overseen by our Global Compliance Committee. Our Legal and Compliance officers lead day-to-day management of the activities, with support from our Procurement and People teams, to ensure all activities are consistent with our public commitments. In addition, the Board of Directors serves as an internal control to ensure publicly disclosed information related to policy/water commitments are free from material misstatement, whether due to fraud or error.

To combat inconsistencies, our compliance officers are available around the clock to advise our people on specific issues. Colleagues can ask questions or raise concerns in person, via a mobile app or website, or anonymously through a global compliance hotline. In 2019, 100% of our colleagues had access to the whistle-blowing hotline, and every country where we had a physical presence had a toll-free version.

Did your organization include information about its response to water-related risks in its most recent mainstream financial report?
Yes (you may attach the report · this is optional)
FYReport2019_EN.pdf
(W7.1) Are water-related issues integrated into any aspects of your long-term strategic business plan, and if so how?

<table>
<thead>
<tr>
<th>Long-term business objectives</th>
<th>Are water-related issues integrated?</th>
<th>Long-term time horizon (years)</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>> 30</td>
<td></td>
<td>As part of our global growth strategy, ABI is involved in markets in multiple countries. Water availability is integrated into our long-term business objectives as it is essential in both growing and maintaining brewing operations. For example, the recent growth of our business in Africa necessitates clear integration of water related risks in our operational and strategic planning such as expansion plans. In order to ensure sufficient production capacity into the future in high growth areas such as Mexico and Africa, new facilities are required to be opened. Greenfield facilities undergo systematic analysis of water availability before capex is approved. As part of the expansion and growth process over the long-term, this includes taking account for the specific issue of water availability in these areas. One of the key factors in these procedures is ensuring water availability in the future. ABI recently launched its sustainability 100+ Approach, which includes consideration of key risks and opportunities for the company to consider in order to remain successful in the next 100 years. This includes financial, environmental, and social value of water availability and water quality for our operations and agricultural supply chain.</td>
</tr>
</tbody>
</table>

Strategy for achieving long-term objectives
Yes, water-related issues are integrated
> 30
As part of our global growth strategy, ABI is involved in markets in multiple countries. In order to ensure sufficient production capacity into the future, new facilities are required to be opened. To achieve this, we have created a strategy for achieving these long-term growth objectives: as part of this process, this includes taking account for the specific issue of water availability in these areas. One of the key factors in these procedures is ensuring water availability in the future. ABI recently launched its sustainability 100+ Approach, which includes consideration of key risks and opportunities for the company to consider in order to remain successful in the next 100 years. This includes financial, environmental, and social value. This includes financial, environmental, and social value of water availability and water quality for our operations and agricultural supply chain.

Financial planning
Yes, water-related issues are integrated
> 30
Financial planning is a key aspect of our global growth strategy, as ABI is involved in markets in multiple countries. In order to ensure sufficient production capacity into the future, capital for new facilities will be required to increase our production volumes. As part of this process, this includes taking account for the specific issue of water availability in these areas. One of the key factors in these procedures is ensuring water availability in the future. ABI recently launched its sustainability 100+ Approach, which includes consideration of key risks and opportunities for the company to consider in order to remain successful in the next 100 years. This includes financial, environmental, and social value. This includes financial, environmental, and social value of water availability and water quality for our operations and agricultural supply chain.

(W7.2) What is the trend in your organization’s water-related capital expenditure (CAPEX) and operating expenditure (OPEX) for the reporting year, and the anticipated trend for the next reporting year?

Water-related CAPEX (+/- % change)	5
Anticipated forward trend for CAPEX (+/- % change)	5
Water-related OPEX (+/- % change)	1
Anticipated forward trend for OPEX (+/- % change)	1

Please explain
Water related expenditure, capex, and opex was utilized for energy and fluids (water efficiency and effluent treatment) in the 2019 fiscal year. The change in CAPEX and OPEX is related to the necessary resources required to achieve our water related goals in 2019. Forward anticipated trends will be extremely hard to predict due to the COVID-19 pandemic, we expect our capex and opex spends to be consistent with past trends.

(W7.3) Does your organization use climate-related scenario analysis to inform its business strategy?

<table>
<thead>
<tr>
<th>Use of climate-related scenario analysis</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Our goal of 25% reduction in CO2 emissions across our value chain was established utilizing climate-related scenario analysis to keep it in line with the level of decarbonization required to keep global temperature increase below 1.5 degrees Celsius compared to pre-industrial temperatures per SBTi.</td>
</tr>
</tbody>
</table>

(W7.3a) Has your organization identified any water-related outcomes from your climate-related scenario analysis?

Yes

(W7.3b)
(W7.3b) What water-related outcomes were identified from the use of climate-related scenario analysis, and what was your organization’s response?

<table>
<thead>
<tr>
<th>Climate-related scenarios and models applied</th>
<th>Description of possible water-related outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
<td>We have identified four possible water-related outcomes. First, disruption of our operations in our facilities due to water quality or quantity issues. Second, disruption of our supply changes due to changing rainfall patterns or droughts as a result of climate change. Thirdly, consumers are becoming increasingly aware of water issues amidst changing climaxes which affect our reputation. Finally, there is the risk of regulators raising the price of water or taking allocation decisions which could impact on water availability. These outcomes could have negative impacts on our operations, our reputation and the resilience of our supply chain.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Company response to possible water-related outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Broadly we regard water as emerging as one of the leading water adaptation Together with NGOs such as the World Wide Fund for Nature (WWF) and The Nature Conservancy (TNC), we continue to invest resources to ensure 100% of our communities in high stress areas will have measurably improved water availability and quality in line with our 2025 goals. Our continued partnership between Stella Artois and Water.org enabled clean water access for half a million people in 2019, driven by the Highly successful “Change Up The Usual” program in the US which was one of the most awarded campaigns of the Super Bowl. Since 2015, the partnership has cumulatively provided 3.5 million people with long-term, sustainable access to clean water. We continued global water partnerships with TNC and the WWF in 2019. Our partnership with TNC is focused on developing Water Funds in Colombia, El Salvador, Argentina and Mexico, and watershed protection projects in the United States. Our partnership with WWF is focused in Bolivia, South Africa and Zambia to highlight the value of water to the economy and encourage private sector investments to contribute to water access and quality improvements, river basin health, and local community needs. One project with TNC is focused on our operations and local community in Bucaramanga, Colombia, where water quality deterioration is occurring as a result of upstream contamination, deforestation and key ecosystem losses.</td>
</tr>
</tbody>
</table>

(W7.4) Does your company use an internal price on water?

Row 1

Does your company use an internal price on water? Yes

Please explain

We do not believe it is consistent to utilize the same price of water in different locations. In each location, we have invested in approaches to derive different values of water in different parts of the industrial cycle. For example, the degree to which it has been treated, stored, cooled, filtered, etc. For each type of water, we have allocated a different price to inform capital investments in terms of saving the most valuable and expensive type of water.

W8. Targets

(W8.1) Describe your approach to setting and monitoring water-related targets and/or goals.

<table>
<thead>
<tr>
<th>Levels for targets and/or goals</th>
<th>Monitoring at corporate level</th>
<th>Approach to setting and monitoring targets and/or goals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1 Company-wide targets and goals Business level specific targets and goals Activity level specific targets and goals Site/facility specific targets and/or goals Brand/product specific targets and/or goals Country level targets and/or goals Basin specific targets and/or goals</td>
<td>Targets are monitored at the corporate level Goals are monitored at the corporate level</td>
<td>As a leader in the beverage industry, AB InBev utilizes water as the number one resource. For example, in 2019 total water consumed was 136 Megaliters. Due to the large quantity of water consumed during operations, the company set a 2025 target to achieve a water efficiency rate of 2.8 hectares of water used per hectoliter of production. Although progressing, AB InBev decreased water use by hectoliter of production by 9.39% since 2017. Our approach to setting water-related targets and goals is through monitoring zone, market, and site level water use. Based upon the water risk level identified for the site, either our standard goal or a specific high-risk watershed target (based on the relevant local water risks and priority response areas through global water partnerships (i.e., NTC and WWF)) is allocated to the facility. Progress is measured and reported on a monthly basis against the ABI seven step watershed management framework. In addition, we published our public goal of measurably improving water availability and quality in high risk watersheds. We aim to brew our beers at the highest level of water efficiency and we continually challenge ourselves to do even more. We have set ambitious water efficiency targets across our business, with even more ambitious goals for our breweries located in communities facing high water stress. In 2019 we implemented innovative technology and process improvements to reduce our per hl water use to 2.80 hl/h.</td>
</tr>
</tbody>
</table>

W8.1a
(W8.1a) Provide details of your water targets that are monitored at the corporate level, and the progress made.

<table>
<thead>
<tr>
<th>Target reference number</th>
<th>Target 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category of target</td>
<td>Product water intensity</td>
</tr>
<tr>
<td>Level</td>
<td>Company-wide</td>
</tr>
<tr>
<td>Primary motivation</td>
<td>Cost savings</td>
</tr>
</tbody>
</table>

Description of target
We have a company-wide target that is monitored at the corporate level to Reduce global water intensity to a leading-edge 2.8 hectoliters of water per hectoliter of production which we categorize using a % reduction per unit of production metric.

Quantitative metric
% reduction per unit of production

Baseline year
2017

Start year
2017

Target year
2025

% of target achieved
100

Please explain
In 2019, ABI achieved our 2025 goal of 2.8/hl/hl meaning we have met 100 percent of our goal. To maintain momentum, we have set more ambitious internal targets while we anticipate future ABI external targets.

(W8.1b) Provide details of your water goal(s) that are monitored at the corporate level and the progress made.

<table>
<thead>
<tr>
<th>Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Providing access to safely managed Water, Sanitation and Hygiene (WASH) in local communities</td>
</tr>
</tbody>
</table>

Level
Company-wide

Motivation
Water stewardship

Description of goal
100% of communities in high risk locations will have measurable improvement in water quality and availability by 2025. The goal is important as reaching the target will ensure that all our operations have better access and quality of water available, and local communities are water secure - resulting in positive neighbors and potential new consumers. The ultimate goal achievement is based on every high-risk site providing evidence of measurable impact on water availability (such as liter of water per person) and quality (such as temperature or pH of water). This goal is being implemented company-wide through an internal Seven Step ABI watershed model process that we developed to help operations manage the journey from analysis, stakeholder engagement and implementation, until governance and measurable impact. Company-wide progress is measured either by the number of sites achieving this desirable end state or their progress against the Seven Step ABI watershed model.

Baseline year
2017

Start year
2017

End year
2025

Progress
To address the challenges specific to the different site-specific environments we operate in, we developed a comprehensive seven step water management process at sites located in water-stressed areas. The indicators utilized to assess progress are water availability (such as liter of water per person) and quality (such as temperature or pH of water). The threshold for success of this project is 100% of communities in high risk locations will have measurable improvement in water quality and availability by 2025. So far, 100% of our sites have conducted local outreach, determined water solutions specific to their community, and identified potential solutions. Since these solutions were identified, we have started to implement them in 67% of sites located in areas facing water stress.

W9. Verification

W9.1
(W9.1) Do you verify any other water information reported in your CDP disclosure (not already covered by W5.1a)?
Yes

W9.1a

(W9.1a) Which data points within your CDP disclosure have been verified, and which standards were used?

<table>
<thead>
<tr>
<th>Disclosure module</th>
<th>Data verified</th>
<th>Verification standard</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>W1 Current state</td>
<td>Total Water Use</td>
<td>ISAE 3000</td>
<td>Limited assurance in accordance with the International Standard on Assurance Engagements ISAE 3000 performed by KPMG Bedrijfsrevisoren CvBA</td>
</tr>
</tbody>
</table>

W10. Sign off

W-FI

(W-FI) Use this field to provide any additional information or context that you feel is relevant to your organization's response. Please note that this field is optional and is not scored.

W10.1

(W10.1) Provide details for the person that has signed off (approved) your CDP water response.

<table>
<thead>
<tr>
<th>Job title</th>
<th>Corresponding job category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
<td>Chief Procurement Officer - Executive Board Member Board/Executive board</td>
</tr>
</tbody>
</table>

W10.2

(W10.2) Please indicate whether your organization agrees for CDP to transfer your publicly disclosed data on your impact and risk response strategies to the CEO Water Mandate’s Water Action Hub [applies only to W2.1a (response to impacts), W4.2 and W4.2a (response to risks)].
No

SW. Supply chain module

SW0.1

(SW0.1) What is your organization's annual revenue for the reporting period?

<table>
<thead>
<tr>
<th>Annual revenue</th>
</tr>
</thead>
<tbody>
<tr>
<td>52300000000</td>
</tr>
</tbody>
</table>

SW0.2

(SW0.2) Do you have an ISIN for your organization that you are willing to share with CDP?
Yes

SW0.2a

(SW0.2a) Please share your ISIN in the table below.

<table>
<thead>
<tr>
<th>ISIN country code</th>
<th>ISIN numeric identifier (including single check digit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
<td>BE 0974293251</td>
</tr>
</tbody>
</table>

CDP
SW1.1

(SW1.1) Could any of your facilities reported in W5.1 have an impact on a requesting CDP supply chain member?
This is confidential

SW1.2

(SW1.2) Are you able to provide geolocation data for your facilities?

<table>
<thead>
<tr>
<th>Row 1</th>
<th>Are you able to provide geolocation data for your facilities?</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No, this is confidential data</td>
<td></td>
</tr>
</tbody>
</table>

SW2.1

(SW2.1) Please propose any mutually beneficial water-related projects you could collaborate on with specific CDP supply chain members.

SW2.2

(SW2.2) Have any water projects been implemented due to CDP supply chain member engagement?
No

SW3.1

(SW3.1) Provide any available water intensity values for your organization’s products or services.

Submit your response

In which language are you submitting your response?
English

Please confirm how your response should be handled by CDP

<table>
<thead>
<tr>
<th>I am submitting to</th>
<th>Public or Non-Public Submission</th>
<th>Are you ready to submit the additional Supply Chain Questions?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investors</td>
<td>Public</td>
<td>Yes, submit Supply Chain Questions now</td>
</tr>
<tr>
<td>Customers</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Please confirm below
I have read and accept the applicable Terms